summaryrefslogtreecommitdiff
path: root/block/blk-merge.c
blob: e0b28e9298c9fb5315225e6a1daacc50ba4786fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
// SPDX-License-Identifier: GPL-2.0
/*
 * Functions related to segment and merge handling
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/blk-integrity.h>
#include <linux/scatterlist.h>
#include <linux/part_stat.h>
#include <linux/blk-cgroup.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq-sched.h"
#include "blk-rq-qos.h"
#include "blk-throttle.h"

static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
{
	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
}

static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
{
	struct bvec_iter iter = bio->bi_iter;
	int idx;

	bio_get_first_bvec(bio, bv);
	if (bv->bv_len == bio->bi_iter.bi_size)
		return;		/* this bio only has a single bvec */

	bio_advance_iter(bio, &iter, iter.bi_size);

	if (!iter.bi_bvec_done)
		idx = iter.bi_idx - 1;
	else	/* in the middle of bvec */
		idx = iter.bi_idx;

	*bv = bio->bi_io_vec[idx];

	/*
	 * iter.bi_bvec_done records actual length of the last bvec
	 * if this bio ends in the middle of one io vector
	 */
	if (iter.bi_bvec_done)
		bv->bv_len = iter.bi_bvec_done;
}

static inline bool bio_will_gap(struct request_queue *q,
		struct request *prev_rq, struct bio *prev, struct bio *next)
{
	struct bio_vec pb, nb;

	if (!bio_has_data(prev) || !queue_virt_boundary(q))
		return false;

	/*
	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
	 * is quite difficult to respect the sg gap limit.  We work hard to
	 * merge a huge number of small single bios in case of mkfs.
	 */
	if (prev_rq)
		bio_get_first_bvec(prev_rq->bio, &pb);
	else
		bio_get_first_bvec(prev, &pb);
	if (pb.bv_offset & queue_virt_boundary(q))
		return true;

	/*
	 * We don't need to worry about the situation that the merged segment
	 * ends in unaligned virt boundary:
	 *
	 * - if 'pb' ends aligned, the merged segment ends aligned
	 * - if 'pb' ends unaligned, the next bio must include
	 *   one single bvec of 'nb', otherwise the 'nb' can't
	 *   merge with 'pb'
	 */
	bio_get_last_bvec(prev, &pb);
	bio_get_first_bvec(next, &nb);
	if (biovec_phys_mergeable(q, &pb, &nb))
		return false;
	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
}

static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
{
	return bio_will_gap(req->q, req, req->biotail, bio);
}

static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
{
	return bio_will_gap(req->q, NULL, bio, req->bio);
}

/*
 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
 * is defined as 'unsigned int', meantime it has to be aligned to with the
 * logical block size, which is the minimum accepted unit by hardware.
 */
static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
{
	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
}

static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
{
	if (unlikely(split_sectors < 0))
		goto error;

	if (split_sectors) {
		struct bio *split;

		split = bio_split(bio, split_sectors, GFP_NOIO,
				&bio->bi_bdev->bd_disk->bio_split);
		if (IS_ERR(split)) {
			split_sectors = PTR_ERR(split);
			goto error;
		}
		split->bi_opf |= REQ_NOMERGE;
		blkcg_bio_issue_init(split);
		bio_chain(split, bio);
		trace_block_split(split, bio->bi_iter.bi_sector);
		WARN_ON_ONCE(bio_zone_write_plugging(bio));
		submit_bio_noacct(bio);
		return split;
	}

	return bio;
error:
	bio->bi_status = errno_to_blk_status(split_sectors);
	bio_endio(bio);
	return NULL;
}

struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
		unsigned *nsegs)
{
	unsigned int max_discard_sectors, granularity;
	sector_t tmp;
	unsigned split_sectors;

	*nsegs = 1;

	granularity = max(lim->discard_granularity >> 9, 1U);

	max_discard_sectors =
		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
	max_discard_sectors -= max_discard_sectors % granularity;
	if (unlikely(!max_discard_sectors))
		return bio;

	if (bio_sectors(bio) <= max_discard_sectors)
		return bio;

	split_sectors = max_discard_sectors;

	/*
	 * If the next starting sector would be misaligned, stop the discard at
	 * the previous aligned sector.
	 */
	tmp = bio->bi_iter.bi_sector + split_sectors -
		((lim->discard_alignment >> 9) % granularity);
	tmp = sector_div(tmp, granularity);

	if (split_sectors > tmp)
		split_sectors -= tmp;

	return bio_submit_split(bio, split_sectors);
}

static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
						bool is_atomic)
{
	/*
	 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
	 * both non-zero.
	 */
	if (is_atomic && lim->atomic_write_boundary_sectors)
		return lim->atomic_write_boundary_sectors;

	return lim->chunk_sectors;
}

/*
 * Return the maximum number of sectors from the start of a bio that may be
 * submitted as a single request to a block device. If enough sectors remain,
 * align the end to the physical block size. Otherwise align the end to the
 * logical block size. This approach minimizes the number of non-aligned
 * requests that are submitted to a block device if the start of a bio is not
 * aligned to a physical block boundary.
 */
static inline unsigned get_max_io_size(struct bio *bio,
				       const struct queue_limits *lim)
{
	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
	bool is_atomic = bio->bi_opf & REQ_ATOMIC;
	unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
	unsigned max_sectors, start, end;

	/*
	 * We ignore lim->max_sectors for atomic writes because it may less
	 * than the actual bio size, which we cannot tolerate.
	 */
	if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
		max_sectors = lim->max_write_zeroes_sectors;
	else if (is_atomic)
		max_sectors = lim->atomic_write_max_sectors;
	else
		max_sectors = lim->max_sectors;

	if (boundary_sectors) {
		max_sectors = min(max_sectors,
			blk_boundary_sectors_left(bio->bi_iter.bi_sector,
					      boundary_sectors));
	}

	start = bio->bi_iter.bi_sector & (pbs - 1);
	end = (start + max_sectors) & ~(pbs - 1);
	if (end > start)
		return end - start;
	return max_sectors & ~(lbs - 1);
}

/**
 * get_max_segment_size() - maximum number of bytes to add as a single segment
 * @lim: Request queue limits.
 * @paddr: address of the range to add
 * @len: maximum length available to add at @paddr
 *
 * Returns the maximum number of bytes of the range starting at @paddr that can
 * be added to a single segment.
 */
static inline unsigned get_max_segment_size(const struct queue_limits *lim,
		phys_addr_t paddr, unsigned int len)
{
	/*
	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
	 * after having calculated the minimum.
	 */
	return min_t(unsigned long, len,
		min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
		    (unsigned long)lim->max_segment_size - 1) + 1);
}

/**
 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 * @lim:      [in] queue limits to split based on
 * @bv:       [in] bvec to examine
 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 *            by the number of segments from @bv that may be appended to that
 *            bio without exceeding @max_segs
 * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
 *            by the number of bytes from @bv that may be appended to that
 *            bio without exceeding @max_bytes
 * @max_segs: [in] upper bound for *@nsegs
 * @max_bytes: [in] upper bound for *@bytes
 *
 * When splitting a bio, it can happen that a bvec is encountered that is too
 * big to fit in a single segment and hence that it has to be split in the
 * middle. This function verifies whether or not that should happen. The value
 * %true is returned if and only if appending the entire @bv to a bio with
 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 * the block driver.
 */
static bool bvec_split_segs(const struct queue_limits *lim,
		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
		unsigned max_segs, unsigned max_bytes)
{
	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
	unsigned len = min(bv->bv_len, max_len);
	unsigned total_len = 0;
	unsigned seg_size = 0;

	while (len && *nsegs < max_segs) {
		seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);

		(*nsegs)++;
		total_len += seg_size;
		len -= seg_size;

		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
			break;
	}

	*bytes += total_len;

	/* tell the caller to split the bvec if it is too big to fit */
	return len > 0 || bv->bv_len > max_len;
}

static unsigned int bio_split_alignment(struct bio *bio,
		const struct queue_limits *lim)
{
	if (op_is_write(bio_op(bio)) && lim->zone_write_granularity)
		return lim->zone_write_granularity;
	return lim->logical_block_size;
}

/**
 * bio_split_rw_at - check if and where to split a read/write bio
 * @bio:  [in] bio to be split
 * @lim:  [in] queue limits to split based on
 * @segs: [out] number of segments in the bio with the first half of the sectors
 * @max_bytes: [in] maximum number of bytes per bio
 *
 * Find out if @bio needs to be split to fit the queue limits in @lim and a
 * maximum size of @max_bytes.  Returns a negative error number if @bio can't be
 * split, 0 if the bio doesn't have to be split, or a positive sector offset if
 * @bio needs to be split.
 */
int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
		unsigned *segs, unsigned max_bytes)
{
	struct bio_vec bv, bvprv, *bvprvp = NULL;
	struct bvec_iter iter;
	unsigned nsegs = 0, bytes = 0;

	bio_for_each_bvec(bv, bio, iter) {
		/*
		 * If the queue doesn't support SG gaps and adding this
		 * offset would create a gap, disallow it.
		 */
		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
			goto split;

		if (nsegs < lim->max_segments &&
		    bytes + bv.bv_len <= max_bytes &&
		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
			nsegs++;
			bytes += bv.bv_len;
		} else {
			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
					lim->max_segments, max_bytes))
				goto split;
		}

		bvprv = bv;
		bvprvp = &bvprv;
	}

	*segs = nsegs;
	return 0;
split:
	if (bio->bi_opf & REQ_ATOMIC)
		return -EINVAL;

	/*
	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
	 * with EAGAIN if splitting is required and return an error pointer.
	 */
	if (bio->bi_opf & REQ_NOWAIT)
		return -EAGAIN;

	*segs = nsegs;

	/*
	 * Individual bvecs might not be logical block aligned. Round down the
	 * split size so that each bio is properly block size aligned, even if
	 * we do not use the full hardware limits.
	 */
	bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim));

	/*
	 * Bio splitting may cause subtle trouble such as hang when doing sync
	 * iopoll in direct IO routine. Given performance gain of iopoll for
	 * big IO can be trival, disable iopoll when split needed.
	 */
	bio_clear_polled(bio);
	return bytes >> SECTOR_SHIFT;
}
EXPORT_SYMBOL_GPL(bio_split_rw_at);

struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
		unsigned *nr_segs)
{
	return bio_submit_split(bio,
		bio_split_rw_at(bio, lim, nr_segs,
			get_max_io_size(bio, lim) << SECTOR_SHIFT));
}

/*
 * REQ_OP_ZONE_APPEND bios must never be split by the block layer.
 *
 * But we want the nr_segs calculation provided by bio_split_rw_at, and having
 * a good sanity check that the submitter built the bio correctly is nice to
 * have as well.
 */
struct bio *bio_split_zone_append(struct bio *bio,
		const struct queue_limits *lim, unsigned *nr_segs)
{
	int split_sectors;

	split_sectors = bio_split_rw_at(bio, lim, nr_segs,
			lim->max_zone_append_sectors << SECTOR_SHIFT);
	if (WARN_ON_ONCE(split_sectors > 0))
		split_sectors = -EINVAL;
	return bio_submit_split(bio, split_sectors);
}

struct bio *bio_split_write_zeroes(struct bio *bio,
		const struct queue_limits *lim, unsigned *nsegs)
{
	unsigned int max_sectors = get_max_io_size(bio, lim);

	*nsegs = 0;

	/*
	 * An unset limit should normally not happen, as bio submission is keyed
	 * off having a non-zero limit.  But SCSI can clear the limit in the
	 * I/O completion handler, and we can race and see this.  Splitting to a
	 * zero limit obviously doesn't make sense, so band-aid it here.
	 */
	if (!max_sectors)
		return bio;
	if (bio_sectors(bio) <= max_sectors)
		return bio;
	return bio_submit_split(bio, max_sectors);
}

/**
 * bio_split_to_limits - split a bio to fit the queue limits
 * @bio:     bio to be split
 *
 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
 * if so split off a bio fitting the limits from the beginning of @bio and
 * return it.  @bio is shortened to the remainder and re-submitted.
 *
 * The split bio is allocated from @q->bio_split, which is provided by the
 * block layer.
 */
struct bio *bio_split_to_limits(struct bio *bio)
{
	unsigned int nr_segs;

	return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs);
}
EXPORT_SYMBOL(bio_split_to_limits);

unsigned int blk_recalc_rq_segments(struct request *rq)
{
	unsigned int nr_phys_segs = 0;
	unsigned int bytes = 0;
	struct req_iterator iter;
	struct bio_vec bv;

	if (!rq->bio)
		return 0;

	switch (bio_op(rq->bio)) {
	case REQ_OP_DISCARD:
	case REQ_OP_SECURE_ERASE:
		if (queue_max_discard_segments(rq->q) > 1) {
			struct bio *bio = rq->bio;

			for_each_bio(bio)
				nr_phys_segs++;
			return nr_phys_segs;
		}
		return 1;
	case REQ_OP_WRITE_ZEROES:
		return 0;
	default:
		break;
	}

	rq_for_each_bvec(bv, rq, iter)
		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
				UINT_MAX, UINT_MAX);
	return nr_phys_segs;
}

static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
		struct scatterlist *sglist)
{
	if (!*sg)
		return sglist;

	/*
	 * If the driver previously mapped a shorter list, we could see a
	 * termination bit prematurely unless it fully inits the sg table
	 * on each mapping. We KNOW that there must be more entries here
	 * or the driver would be buggy, so force clear the termination bit
	 * to avoid doing a full sg_init_table() in drivers for each command.
	 */
	sg_unmark_end(*sg);
	return sg_next(*sg);
}

static unsigned blk_bvec_map_sg(struct request_queue *q,
		struct bio_vec *bvec, struct scatterlist *sglist,
		struct scatterlist **sg)
{
	unsigned nbytes = bvec->bv_len;
	unsigned nsegs = 0, total = 0;

	while (nbytes > 0) {
		unsigned offset = bvec->bv_offset + total;
		unsigned len = get_max_segment_size(&q->limits,
				bvec_phys(bvec) + total, nbytes);
		struct page *page = bvec->bv_page;

		/*
		 * Unfortunately a fair number of drivers barf on scatterlists
		 * that have an offset larger than PAGE_SIZE, despite other
		 * subsystems dealing with that invariant just fine.  For now
		 * stick to the legacy format where we never present those from
		 * the block layer, but the code below should be removed once
		 * these offenders (mostly MMC/SD drivers) are fixed.
		 */
		page += (offset >> PAGE_SHIFT);
		offset &= ~PAGE_MASK;

		*sg = blk_next_sg(sg, sglist);
		sg_set_page(*sg, page, len, offset);

		total += len;
		nbytes -= len;
		nsegs++;
	}

	return nsegs;
}

static inline int __blk_bvec_map_sg(struct bio_vec bv,
		struct scatterlist *sglist, struct scatterlist **sg)
{
	*sg = blk_next_sg(sg, sglist);
	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
	return 1;
}

/* only try to merge bvecs into one sg if they are from two bios */
static inline bool
__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
			   struct bio_vec *bvprv, struct scatterlist **sg)
{

	int nbytes = bvec->bv_len;

	if (!*sg)
		return false;

	if ((*sg)->length + nbytes > queue_max_segment_size(q))
		return false;

	if (!biovec_phys_mergeable(q, bvprv, bvec))
		return false;

	(*sg)->length += nbytes;

	return true;
}

static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
			     struct scatterlist *sglist,
			     struct scatterlist **sg)
{
	struct bio_vec bvec, bvprv = { NULL };
	struct bvec_iter iter;
	int nsegs = 0;
	bool new_bio = false;

	for_each_bio(bio) {
		bio_for_each_bvec(bvec, bio, iter) {
			/*
			 * Only try to merge bvecs from two bios given we
			 * have done bio internal merge when adding pages
			 * to bio
			 */
			if (new_bio &&
			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
				goto next_bvec;

			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
			else
				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 next_bvec:
			new_bio = false;
		}
		if (likely(bio->bi_iter.bi_size)) {
			bvprv = bvec;
			new_bio = true;
		}
	}

	return nsegs;
}

/*
 * map a request to scatterlist, return number of sg entries setup. Caller
 * must make sure sg can hold rq->nr_phys_segments entries
 */
int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
		struct scatterlist *sglist, struct scatterlist **last_sg)
{
	int nsegs = 0;

	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
	else if (rq->bio)
		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);

	if (*last_sg)
		sg_mark_end(*last_sg);

	/*
	 * Something must have been wrong if the figured number of
	 * segment is bigger than number of req's physical segments
	 */
	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));

	return nsegs;
}
EXPORT_SYMBOL(__blk_rq_map_sg);

static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
						  sector_t offset)
{
	struct request_queue *q = rq->q;
	struct queue_limits *lim = &q->limits;
	unsigned int max_sectors, boundary_sectors;
	bool is_atomic = rq->cmd_flags & REQ_ATOMIC;

	if (blk_rq_is_passthrough(rq))
		return q->limits.max_hw_sectors;

	boundary_sectors = blk_boundary_sectors(lim, is_atomic);
	max_sectors = blk_queue_get_max_sectors(rq);

	if (!boundary_sectors ||
	    req_op(rq) == REQ_OP_DISCARD ||
	    req_op(rq) == REQ_OP_SECURE_ERASE)
		return max_sectors;
	return min(max_sectors,
		   blk_boundary_sectors_left(offset, boundary_sectors));
}

static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
		unsigned int nr_phys_segs)
{
	if (!blk_cgroup_mergeable(req, bio))
		goto no_merge;

	if (blk_integrity_merge_bio(req->q, req, bio) == false)
		goto no_merge;

	/* discard request merge won't add new segment */
	if (req_op(req) == REQ_OP_DISCARD)
		return 1;

	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
		goto no_merge;

	/*
	 * This will form the start of a new hw segment.  Bump both
	 * counters.
	 */
	req->nr_phys_segments += nr_phys_segs;
	if (bio_integrity(bio))
		req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
									bio);
	return 1;

no_merge:
	req_set_nomerge(req->q, req);
	return 0;
}

int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
{
	if (req_gap_back_merge(req, bio))
		return 0;
	if (blk_integrity_rq(req) &&
	    integrity_req_gap_back_merge(req, bio))
		return 0;
	if (!bio_crypt_ctx_back_mergeable(req, bio))
		return 0;
	if (blk_rq_sectors(req) + bio_sectors(bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
		req_set_nomerge(req->q, req);
		return 0;
	}

	return ll_new_hw_segment(req, bio, nr_segs);
}

static int ll_front_merge_fn(struct request *req, struct bio *bio,
		unsigned int nr_segs)
{
	if (req_gap_front_merge(req, bio))
		return 0;
	if (blk_integrity_rq(req) &&
	    integrity_req_gap_front_merge(req, bio))
		return 0;
	if (!bio_crypt_ctx_front_mergeable(req, bio))
		return 0;
	if (blk_rq_sectors(req) + bio_sectors(bio) >
	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
		req_set_nomerge(req->q, req);
		return 0;
	}

	return ll_new_hw_segment(req, bio, nr_segs);
}

static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
		struct request *next)
{
	unsigned short segments = blk_rq_nr_discard_segments(req);

	if (segments >= queue_max_discard_segments(q))
		goto no_merge;
	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		goto no_merge;

	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
	return true;
no_merge:
	req_set_nomerge(q, req);
	return false;
}

static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
				struct request *next)
{
	int total_phys_segments;

	if (req_gap_back_merge(req, next->bio))
		return 0;

	/*
	 * Will it become too large?
	 */
	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		return 0;

	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
	if (total_phys_segments > blk_rq_get_max_segments(req))
		return 0;

	if (!blk_cgroup_mergeable(req, next->bio))
		return 0;

	if (blk_integrity_merge_rq(q, req, next) == false)
		return 0;

	if (!bio_crypt_ctx_merge_rq(req, next))
		return 0;

	/* Merge is OK... */
	req->nr_phys_segments = total_phys_segments;
	req->nr_integrity_segments += next->nr_integrity_segments;
	return 1;
}

/**
 * blk_rq_set_mixed_merge - mark a request as mixed merge
 * @rq: request to mark as mixed merge
 *
 * Description:
 *     @rq is about to be mixed merged.  Make sure the attributes
 *     which can be mixed are set in each bio and mark @rq as mixed
 *     merged.
 */
static void blk_rq_set_mixed_merge(struct request *rq)
{
	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
	struct bio *bio;

	if (rq->rq_flags & RQF_MIXED_MERGE)
		return;

	/*
	 * @rq will no longer represent mixable attributes for all the
	 * contained bios.  It will just track those of the first one.
	 * Distributes the attributs to each bio.
	 */
	for (bio = rq->bio; bio; bio = bio->bi_next) {
		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
		bio->bi_opf |= ff;
	}
	rq->rq_flags |= RQF_MIXED_MERGE;
}

static inline blk_opf_t bio_failfast(const struct bio *bio)
{
	if (bio->bi_opf & REQ_RAHEAD)
		return REQ_FAILFAST_MASK;

	return bio->bi_opf & REQ_FAILFAST_MASK;
}

/*
 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
 * as failfast, and request's failfast has to be updated in case of
 * front merge.
 */
static inline void blk_update_mixed_merge(struct request *req,
		struct bio *bio, bool front_merge)
{
	if (req->rq_flags & RQF_MIXED_MERGE) {
		if (bio->bi_opf & REQ_RAHEAD)
			bio->bi_opf |= REQ_FAILFAST_MASK;

		if (front_merge) {
			req->cmd_flags &= ~REQ_FAILFAST_MASK;
			req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
		}
	}
}

static void blk_account_io_merge_request(struct request *req)
{
	if (req->rq_flags & RQF_IO_STAT) {
		part_stat_lock();
		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
		part_stat_local_dec(req->part,
				    in_flight[op_is_write(req_op(req))]);
		part_stat_unlock();
	}
}

static enum elv_merge blk_try_req_merge(struct request *req,
					struct request *next)
{
	if (blk_discard_mergable(req))
		return ELEVATOR_DISCARD_MERGE;
	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
		return ELEVATOR_BACK_MERGE;

	return ELEVATOR_NO_MERGE;
}

static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
					      struct bio *bio)
{
	return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
}

static bool blk_atomic_write_mergeable_rqs(struct request *rq,
					   struct request *next)
{
	return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
}

/*
 * For non-mq, this has to be called with the request spinlock acquired.
 * For mq with scheduling, the appropriate queue wide lock should be held.
 */
static struct request *attempt_merge(struct request_queue *q,
				     struct request *req, struct request *next)
{
	if (!rq_mergeable(req) || !rq_mergeable(next))
		return NULL;

	if (req_op(req) != req_op(next))
		return NULL;

	if (rq_data_dir(req) != rq_data_dir(next))
		return NULL;

	if (req->bio && next->bio) {
		/* Don't merge requests with different write hints. */
		if (req->bio->bi_write_hint != next->bio->bi_write_hint)
			return NULL;
		if (req->bio->bi_ioprio != next->bio->bi_ioprio)
			return NULL;
	}

	if (!blk_atomic_write_mergeable_rqs(req, next))
		return NULL;

	/*
	 * If we are allowed to merge, then append bio list
	 * from next to rq and release next. merge_requests_fn
	 * will have updated segment counts, update sector
	 * counts here. Handle DISCARDs separately, as they
	 * have separate settings.
	 */

	switch (blk_try_req_merge(req, next)) {
	case ELEVATOR_DISCARD_MERGE:
		if (!req_attempt_discard_merge(q, req, next))
			return NULL;
		break;
	case ELEVATOR_BACK_MERGE:
		if (!ll_merge_requests_fn(q, req, next))
			return NULL;
		break;
	default:
		return NULL;
	}

	/*
	 * If failfast settings disagree or any of the two is already
	 * a mixed merge, mark both as mixed before proceeding.  This
	 * makes sure that all involved bios have mixable attributes
	 * set properly.
	 */
	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
		blk_rq_set_mixed_merge(req);
		blk_rq_set_mixed_merge(next);
	}

	/*
	 * At this point we have either done a back merge or front merge. We
	 * need the smaller start_time_ns of the merged requests to be the
	 * current request for accounting purposes.
	 */
	if (next->start_time_ns < req->start_time_ns)
		req->start_time_ns = next->start_time_ns;

	req->biotail->bi_next = next->bio;
	req->biotail = next->biotail;

	req->__data_len += blk_rq_bytes(next);

	if (!blk_discard_mergable(req))
		elv_merge_requests(q, req, next);

	blk_crypto_rq_put_keyslot(next);

	/*
	 * 'next' is going away, so update stats accordingly
	 */
	blk_account_io_merge_request(next);

	trace_block_rq_merge(next);

	/*
	 * ownership of bio passed from next to req, return 'next' for
	 * the caller to free
	 */
	next->bio = NULL;
	return next;
}

static struct request *attempt_back_merge(struct request_queue *q,
		struct request *rq)
{
	struct request *next = elv_latter_request(q, rq);

	if (next)
		return attempt_merge(q, rq, next);

	return NULL;
}

static struct request *attempt_front_merge(struct request_queue *q,
		struct request *rq)
{
	struct request *prev = elv_former_request(q, rq);

	if (prev)
		return attempt_merge(q, prev, rq);

	return NULL;
}

/*
 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
 * otherwise. The caller is responsible for freeing 'next' if the merge
 * happened.
 */
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
			   struct request *next)
{
	return attempt_merge(q, rq, next);
}

bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
{
	if (!rq_mergeable(rq) || !bio_mergeable(bio))
		return false;

	if (req_op(rq) != bio_op(bio))
		return false;

	/* different data direction or already started, don't merge */
	if (bio_data_dir(bio) != rq_data_dir(rq))
		return false;

	/* don't merge across cgroup boundaries */
	if (!blk_cgroup_mergeable(rq, bio))
		return false;

	/* only merge integrity protected bio into ditto rq */
	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
		return false;

	/* Only merge if the crypt contexts are compatible */
	if (!bio_crypt_rq_ctx_compatible(rq, bio))
		return false;

	if (rq->bio) {
		/* Don't merge requests with different write hints. */
		if (rq->bio->bi_write_hint != bio->bi_write_hint)
			return false;
		if (rq->bio->bi_ioprio != bio->bi_ioprio)
			return false;
	}

	if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
		return false;

	return true;
}

enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
{
	if (blk_discard_mergable(rq))
		return ELEVATOR_DISCARD_MERGE;
	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
		return ELEVATOR_BACK_MERGE;
	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
		return ELEVATOR_FRONT_MERGE;
	return ELEVATOR_NO_MERGE;
}

static void blk_account_io_merge_bio(struct request *req)
{
	if (req->rq_flags & RQF_IO_STAT) {
		part_stat_lock();
		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
		part_stat_unlock();
	}
}

enum bio_merge_status bio_attempt_back_merge(struct request *req,
		struct bio *bio, unsigned int nr_segs)
{
	const blk_opf_t ff = bio_failfast(bio);

	if (!ll_back_merge_fn(req, bio, nr_segs))
		return BIO_MERGE_FAILED;

	trace_block_bio_backmerge(bio);
	rq_qos_merge(req->q, req, bio);

	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
		blk_rq_set_mixed_merge(req);

	blk_update_mixed_merge(req, bio, false);

	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
		blk_zone_write_plug_bio_merged(bio);

	req->biotail->bi_next = bio;
	req->biotail = bio;
	req->__data_len += bio->bi_iter.bi_size;

	bio_crypt_free_ctx(bio);

	blk_account_io_merge_bio(req);
	return BIO_MERGE_OK;
}

static enum bio_merge_status bio_attempt_front_merge(struct request *req,
		struct bio *bio, unsigned int nr_segs)
{
	const blk_opf_t ff = bio_failfast(bio);

	/*
	 * A front merge for writes to sequential zones of a zoned block device
	 * can happen only if the user submitted writes out of order. Do not
	 * merge such write to let it fail.
	 */
	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
		return BIO_MERGE_FAILED;

	if (!ll_front_merge_fn(req, bio, nr_segs))
		return BIO_MERGE_FAILED;

	trace_block_bio_frontmerge(bio);
	rq_qos_merge(req->q, req, bio);

	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
		blk_rq_set_mixed_merge(req);

	blk_update_mixed_merge(req, bio, true);

	bio->bi_next = req->bio;
	req->bio = bio;

	req->__sector = bio->bi_iter.bi_sector;
	req->__data_len += bio->bi_iter.bi_size;

	bio_crypt_do_front_merge(req, bio);

	blk_account_io_merge_bio(req);
	return BIO_MERGE_OK;
}

static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
		struct request *req, struct bio *bio)
{
	unsigned short segments = blk_rq_nr_discard_segments(req);

	if (segments >= queue_max_discard_segments(q))
		goto no_merge;
	if (blk_rq_sectors(req) + bio_sectors(bio) >
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
		goto no_merge;

	rq_qos_merge(q, req, bio);

	req->biotail->bi_next = bio;
	req->biotail = bio;
	req->__data_len += bio->bi_iter.bi_size;
	req->nr_phys_segments = segments + 1;

	blk_account_io_merge_bio(req);
	return BIO_MERGE_OK;
no_merge:
	req_set_nomerge(q, req);
	return BIO_MERGE_FAILED;
}

static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
						   struct request *rq,
						   struct bio *bio,
						   unsigned int nr_segs,
						   bool sched_allow_merge)
{
	if (!blk_rq_merge_ok(rq, bio))
		return BIO_MERGE_NONE;

	switch (blk_try_merge(rq, bio)) {
	case ELEVATOR_BACK_MERGE:
		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
			return bio_attempt_back_merge(rq, bio, nr_segs);
		break;
	case ELEVATOR_FRONT_MERGE:
		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
			return bio_attempt_front_merge(rq, bio, nr_segs);
		break;
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio);
	default:
		return BIO_MERGE_NONE;
	}

	return BIO_MERGE_FAILED;
}

/**
 * blk_attempt_plug_merge - try to merge with %current's plugged list
 * @q: request_queue new bio is being queued at
 * @bio: new bio being queued
 * @nr_segs: number of segments in @bio
 * from the passed in @q already in the plug list
 *
 * Determine whether @bio being queued on @q can be merged with the previous
 * request on %current's plugged list.  Returns %true if merge was successful,
 * otherwise %false.
 *
 * Plugging coalesces IOs from the same issuer for the same purpose without
 * going through @q->queue_lock.  As such it's more of an issuing mechanism
 * than scheduling, and the request, while may have elvpriv data, is not
 * added on the elevator at this point.  In addition, we don't have
 * reliable access to the elevator outside queue lock.  Only check basic
 * merging parameters without querying the elevator.
 *
 * Caller must ensure !blk_queue_nomerges(q) beforehand.
 */
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs)
{
	struct blk_plug *plug = current->plug;
	struct request *rq;

	if (!plug || rq_list_empty(&plug->mq_list))
		return false;

	rq_list_for_each(&plug->mq_list, rq) {
		if (rq->q == q) {
			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
			    BIO_MERGE_OK)
				return true;
			break;
		}

		/*
		 * Only keep iterating plug list for merges if we have multiple
		 * queues
		 */
		if (!plug->multiple_queues)
			break;
	}
	return false;
}

/*
 * Iterate list of requests and see if we can merge this bio with any
 * of them.
 */
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
			struct bio *bio, unsigned int nr_segs)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, list, queuelist) {
		if (!checked--)
			break;

		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
		case BIO_MERGE_NONE:
			continue;
		case BIO_MERGE_OK:
			return true;
		case BIO_MERGE_FAILED:
			return false;
		}

	}

	return false;
}
EXPORT_SYMBOL_GPL(blk_bio_list_merge);

bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
		unsigned int nr_segs, struct request **merged_request)
{
	struct request *rq;

	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	case ELEVATOR_DISCARD_MERGE:
		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
	default:
		return false;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);