summaryrefslogtreecommitdiff
path: root/crypto/polyval-generic.c
blob: 4f98910bcdb589f5c77ab2343a77a2ca8daff9c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// SPDX-License-Identifier: GPL-2.0-only
/*
 * POLYVAL: hash function for HCTR2.
 *
 * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi>
 * Copyright (c) 2009 Intel Corp.
 *   Author: Huang Ying <ying.huang@intel.com>
 * Copyright 2021 Google LLC
 */

/*
 * Code based on crypto/ghash-generic.c
 *
 * POLYVAL is a keyed hash function similar to GHASH. POLYVAL uses a different
 * modulus for finite field multiplication which makes hardware accelerated
 * implementations on little-endian machines faster. POLYVAL is used in the
 * kernel to implement HCTR2, but was originally specified for AES-GCM-SIV
 * (RFC 8452).
 *
 * For more information see:
 * Length-preserving encryption with HCTR2:
 *   https://eprint.iacr.org/2021/1441.pdf
 * AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption:
 *   https://datatracker.ietf.org/doc/html/rfc8452
 *
 * Like GHASH, POLYVAL is not a cryptographic hash function and should
 * not be used outside of crypto modes explicitly designed to use POLYVAL.
 *
 * This implementation uses a convenient trick involving the GHASH and POLYVAL
 * fields. This trick allows multiplication in the POLYVAL field to be
 * implemented by using multiplication in the GHASH field as a subroutine. An
 * element of the POLYVAL field can be converted to an element of the GHASH
 * field by computing x*REVERSE(a), where REVERSE reverses the byte-ordering of
 * a. Similarly, an element of the GHASH field can be converted back to the
 * POLYVAL field by computing REVERSE(x^{-1}*a). For more information, see:
 * https://datatracker.ietf.org/doc/html/rfc8452#appendix-A
 *
 * By using this trick, we do not need to implement the POLYVAL field for the
 * generic implementation.
 *
 * Warning: this generic implementation is not intended to be used in practice
 * and is not constant time. For practical use, a hardware accelerated
 * implementation of POLYVAL should be used instead.
 *
 */

#include <linux/unaligned.h>
#include <crypto/algapi.h>
#include <crypto/gf128mul.h>
#include <crypto/polyval.h>
#include <crypto/internal/hash.h>
#include <linux/crypto.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>

struct polyval_tfm_ctx {
	struct gf128mul_4k *gf128;
};

struct polyval_desc_ctx {
	union {
		u8 buffer[POLYVAL_BLOCK_SIZE];
		be128 buffer128;
	};
	u32 bytes;
};

static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE],
			     const u8 src[POLYVAL_BLOCK_SIZE])
{
	u64 a = get_unaligned((const u64 *)&src[0]);
	u64 b = get_unaligned((const u64 *)&src[8]);

	put_unaligned(swab64(a), (u64 *)&dst[8]);
	put_unaligned(swab64(b), (u64 *)&dst[0]);
}

/*
 * Performs multiplication in the POLYVAL field using the GHASH field as a
 * subroutine.  This function is used as a fallback for hardware accelerated
 * implementations when simd registers are unavailable.
 *
 * Note: This function is not used for polyval-generic, instead we use the 4k
 * lookup table implementation for finite field multiplication.
 */
void polyval_mul_non4k(u8 *op1, const u8 *op2)
{
	be128 a, b;

	// Assume one argument is in Montgomery form and one is not.
	copy_and_reverse((u8 *)&a, op1);
	copy_and_reverse((u8 *)&b, op2);
	gf128mul_x_lle(&a, &a);
	gf128mul_lle(&a, &b);
	copy_and_reverse(op1, (u8 *)&a);
}
EXPORT_SYMBOL_GPL(polyval_mul_non4k);

/*
 * Perform a POLYVAL update using non4k multiplication.  This function is used
 * as a fallback for hardware accelerated implementations when simd registers
 * are unavailable.
 *
 * Note: This function is not used for polyval-generic, instead we use the 4k
 * lookup table implementation of finite field multiplication.
 */
void polyval_update_non4k(const u8 *key, const u8 *in,
			  size_t nblocks, u8 *accumulator)
{
	while (nblocks--) {
		crypto_xor(accumulator, in, POLYVAL_BLOCK_SIZE);
		polyval_mul_non4k(accumulator, key);
		in += POLYVAL_BLOCK_SIZE;
	}
}
EXPORT_SYMBOL_GPL(polyval_update_non4k);

static int polyval_setkey(struct crypto_shash *tfm,
			  const u8 *key, unsigned int keylen)
{
	struct polyval_tfm_ctx *ctx = crypto_shash_ctx(tfm);
	be128 k;

	if (keylen != POLYVAL_BLOCK_SIZE)
		return -EINVAL;

	gf128mul_free_4k(ctx->gf128);

	BUILD_BUG_ON(sizeof(k) != POLYVAL_BLOCK_SIZE);
	copy_and_reverse((u8 *)&k, key);
	gf128mul_x_lle(&k, &k);

	ctx->gf128 = gf128mul_init_4k_lle(&k);
	memzero_explicit(&k, POLYVAL_BLOCK_SIZE);

	if (!ctx->gf128)
		return -ENOMEM;

	return 0;
}

static int polyval_init(struct shash_desc *desc)
{
	struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);

	memset(dctx, 0, sizeof(*dctx));

	return 0;
}

static int polyval_update(struct shash_desc *desc,
			 const u8 *src, unsigned int srclen)
{
	struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
	const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm);
	u8 *pos;
	u8 tmp[POLYVAL_BLOCK_SIZE];
	int n;

	if (dctx->bytes) {
		n = min(srclen, dctx->bytes);
		pos = dctx->buffer + dctx->bytes - 1;

		dctx->bytes -= n;
		srclen -= n;

		while (n--)
			*pos-- ^= *src++;

		if (!dctx->bytes)
			gf128mul_4k_lle(&dctx->buffer128, ctx->gf128);
	}

	while (srclen >= POLYVAL_BLOCK_SIZE) {
		copy_and_reverse(tmp, src);
		crypto_xor(dctx->buffer, tmp, POLYVAL_BLOCK_SIZE);
		gf128mul_4k_lle(&dctx->buffer128, ctx->gf128);
		src += POLYVAL_BLOCK_SIZE;
		srclen -= POLYVAL_BLOCK_SIZE;
	}

	if (srclen) {
		dctx->bytes = POLYVAL_BLOCK_SIZE - srclen;
		pos = dctx->buffer + POLYVAL_BLOCK_SIZE - 1;
		while (srclen--)
			*pos-- ^= *src++;
	}

	return 0;
}

static int polyval_final(struct shash_desc *desc, u8 *dst)
{
	struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
	const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm);

	if (dctx->bytes)
		gf128mul_4k_lle(&dctx->buffer128, ctx->gf128);
	copy_and_reverse(dst, dctx->buffer);
	return 0;
}

static void polyval_exit_tfm(struct crypto_tfm *tfm)
{
	struct polyval_tfm_ctx *ctx = crypto_tfm_ctx(tfm);

	gf128mul_free_4k(ctx->gf128);
}

static struct shash_alg polyval_alg = {
	.digestsize	= POLYVAL_DIGEST_SIZE,
	.init		= polyval_init,
	.update		= polyval_update,
	.final		= polyval_final,
	.setkey		= polyval_setkey,
	.descsize	= sizeof(struct polyval_desc_ctx),
	.base		= {
		.cra_name		= "polyval",
		.cra_driver_name	= "polyval-generic",
		.cra_priority		= 100,
		.cra_blocksize		= POLYVAL_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(struct polyval_tfm_ctx),
		.cra_module		= THIS_MODULE,
		.cra_exit		= polyval_exit_tfm,
	},
};

static int __init polyval_mod_init(void)
{
	return crypto_register_shash(&polyval_alg);
}

static void __exit polyval_mod_exit(void)
{
	crypto_unregister_shash(&polyval_alg);
}

subsys_initcall(polyval_mod_init);
module_exit(polyval_mod_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("POLYVAL hash function");
MODULE_ALIAS_CRYPTO("polyval");
MODULE_ALIAS_CRYPTO("polyval-generic");