1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019, Intel Corporation.
*
* Heterogeneous Memory Attributes Table (HMAT) representation
*
* This program parses and reports the platform's HMAT tables, and registers
* the applicable attributes with the node's interfaces.
*/
#define pr_fmt(fmt) "acpi/hmat: " fmt
#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/platform_device.h>
#include <linux/list_sort.h>
#include <linux/memregion.h>
#include <linux/memory.h>
#include <linux/mutex.h>
#include <linux/node.h>
#include <linux/sysfs.h>
#include <linux/dax.h>
static u8 hmat_revision;
static int hmat_disable __initdata;
void __init disable_hmat(void)
{
hmat_disable = 1;
}
static LIST_HEAD(targets);
static LIST_HEAD(initiators);
static LIST_HEAD(localities);
static DEFINE_MUTEX(target_lock);
/*
* The defined enum order is used to prioritize attributes to break ties when
* selecting the best performing node.
*/
enum locality_types {
WRITE_LATENCY,
READ_LATENCY,
WRITE_BANDWIDTH,
READ_BANDWIDTH,
};
static struct memory_locality *localities_types[4];
struct target_cache {
struct list_head node;
struct node_cache_attrs cache_attrs;
};
struct memory_target {
struct list_head node;
unsigned int memory_pxm;
unsigned int processor_pxm;
struct resource memregions;
struct node_hmem_attrs hmem_attrs[2];
struct list_head caches;
struct node_cache_attrs cache_attrs;
bool registered;
};
struct memory_initiator {
struct list_head node;
unsigned int processor_pxm;
bool has_cpu;
};
struct memory_locality {
struct list_head node;
struct acpi_hmat_locality *hmat_loc;
};
static struct memory_initiator *find_mem_initiator(unsigned int cpu_pxm)
{
struct memory_initiator *initiator;
list_for_each_entry(initiator, &initiators, node)
if (initiator->processor_pxm == cpu_pxm)
return initiator;
return NULL;
}
static struct memory_target *find_mem_target(unsigned int mem_pxm)
{
struct memory_target *target;
list_for_each_entry(target, &targets, node)
if (target->memory_pxm == mem_pxm)
return target;
return NULL;
}
static __init void alloc_memory_initiator(unsigned int cpu_pxm)
{
struct memory_initiator *initiator;
if (pxm_to_node(cpu_pxm) == NUMA_NO_NODE)
return;
initiator = find_mem_initiator(cpu_pxm);
if (initiator)
return;
initiator = kzalloc(sizeof(*initiator), GFP_KERNEL);
if (!initiator)
return;
initiator->processor_pxm = cpu_pxm;
initiator->has_cpu = node_state(pxm_to_node(cpu_pxm), N_CPU);
list_add_tail(&initiator->node, &initiators);
}
static __init void alloc_memory_target(unsigned int mem_pxm,
resource_size_t start, resource_size_t len)
{
struct memory_target *target;
target = find_mem_target(mem_pxm);
if (!target) {
target = kzalloc(sizeof(*target), GFP_KERNEL);
if (!target)
return;
target->memory_pxm = mem_pxm;
target->processor_pxm = PXM_INVAL;
target->memregions = (struct resource) {
.name = "ACPI mem",
.start = 0,
.end = -1,
.flags = IORESOURCE_MEM,
};
list_add_tail(&target->node, &targets);
INIT_LIST_HEAD(&target->caches);
}
/*
* There are potentially multiple ranges per PXM, so record each
* in the per-target memregions resource tree.
*/
if (!__request_region(&target->memregions, start, len, "memory target",
IORESOURCE_MEM))
pr_warn("failed to reserve %#llx - %#llx in pxm: %d\n",
start, start + len, mem_pxm);
}
static __init const char *hmat_data_type(u8 type)
{
switch (type) {
case ACPI_HMAT_ACCESS_LATENCY:
return "Access Latency";
case ACPI_HMAT_READ_LATENCY:
return "Read Latency";
case ACPI_HMAT_WRITE_LATENCY:
return "Write Latency";
case ACPI_HMAT_ACCESS_BANDWIDTH:
return "Access Bandwidth";
case ACPI_HMAT_READ_BANDWIDTH:
return "Read Bandwidth";
case ACPI_HMAT_WRITE_BANDWIDTH:
return "Write Bandwidth";
default:
return "Reserved";
}
}
static __init const char *hmat_data_type_suffix(u8 type)
{
switch (type) {
case ACPI_HMAT_ACCESS_LATENCY:
case ACPI_HMAT_READ_LATENCY:
case ACPI_HMAT_WRITE_LATENCY:
return " nsec";
case ACPI_HMAT_ACCESS_BANDWIDTH:
case ACPI_HMAT_READ_BANDWIDTH:
case ACPI_HMAT_WRITE_BANDWIDTH:
return " MB/s";
default:
return "";
}
}
static u32 hmat_normalize(u16 entry, u64 base, u8 type)
{
u32 value;
/*
* Check for invalid and overflow values
*/
if (entry == 0xffff || !entry)
return 0;
else if (base > (UINT_MAX / (entry)))
return 0;
/*
* Divide by the base unit for version 1, convert latency from
* picosenonds to nanoseconds if revision 2.
*/
value = entry * base;
if (hmat_revision == 1) {
if (value < 10)
return 0;
value = DIV_ROUND_UP(value, 10);
} else if (hmat_revision == 2) {
switch (type) {
case ACPI_HMAT_ACCESS_LATENCY:
case ACPI_HMAT_READ_LATENCY:
case ACPI_HMAT_WRITE_LATENCY:
value = DIV_ROUND_UP(value, 1000);
break;
default:
break;
}
}
return value;
}
static void hmat_update_target_access(struct memory_target *target,
u8 type, u32 value, int access)
{
switch (type) {
case ACPI_HMAT_ACCESS_LATENCY:
target->hmem_attrs[access].read_latency = value;
target->hmem_attrs[access].write_latency = value;
break;
case ACPI_HMAT_READ_LATENCY:
target->hmem_attrs[access].read_latency = value;
break;
case ACPI_HMAT_WRITE_LATENCY:
target->hmem_attrs[access].write_latency = value;
break;
case ACPI_HMAT_ACCESS_BANDWIDTH:
target->hmem_attrs[access].read_bandwidth = value;
target->hmem_attrs[access].write_bandwidth = value;
break;
case ACPI_HMAT_READ_BANDWIDTH:
target->hmem_attrs[access].read_bandwidth = value;
break;
case ACPI_HMAT_WRITE_BANDWIDTH:
target->hmem_attrs[access].write_bandwidth = value;
break;
default:
break;
}
}
static __init void hmat_add_locality(struct acpi_hmat_locality *hmat_loc)
{
struct memory_locality *loc;
loc = kzalloc(sizeof(*loc), GFP_KERNEL);
if (!loc) {
pr_notice_once("Failed to allocate HMAT locality\n");
return;
}
loc->hmat_loc = hmat_loc;
list_add_tail(&loc->node, &localities);
switch (hmat_loc->data_type) {
case ACPI_HMAT_ACCESS_LATENCY:
localities_types[READ_LATENCY] = loc;
localities_types[WRITE_LATENCY] = loc;
break;
case ACPI_HMAT_READ_LATENCY:
localities_types[READ_LATENCY] = loc;
break;
case ACPI_HMAT_WRITE_LATENCY:
localities_types[WRITE_LATENCY] = loc;
break;
case ACPI_HMAT_ACCESS_BANDWIDTH:
localities_types[READ_BANDWIDTH] = loc;
localities_types[WRITE_BANDWIDTH] = loc;
break;
case ACPI_HMAT_READ_BANDWIDTH:
localities_types[READ_BANDWIDTH] = loc;
break;
case ACPI_HMAT_WRITE_BANDWIDTH:
localities_types[WRITE_BANDWIDTH] = loc;
break;
default:
break;
}
}
static __init int hmat_parse_locality(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_hmat_locality *hmat_loc = (void *)header;
struct memory_target *target;
unsigned int init, targ, total_size, ipds, tpds;
u32 *inits, *targs, value;
u16 *entries;
u8 type, mem_hier;
if (hmat_loc->header.length < sizeof(*hmat_loc)) {
pr_notice("Unexpected locality header length: %u\n",
hmat_loc->header.length);
return -EINVAL;
}
type = hmat_loc->data_type;
mem_hier = hmat_loc->flags & ACPI_HMAT_MEMORY_HIERARCHY;
ipds = hmat_loc->number_of_initiator_Pds;
tpds = hmat_loc->number_of_target_Pds;
total_size = sizeof(*hmat_loc) + sizeof(*entries) * ipds * tpds +
sizeof(*inits) * ipds + sizeof(*targs) * tpds;
if (hmat_loc->header.length < total_size) {
pr_notice("Unexpected locality header length:%u, minimum required:%u\n",
hmat_loc->header.length, total_size);
return -EINVAL;
}
pr_info("Locality: Flags:%02x Type:%s Initiator Domains:%u Target Domains:%u Base:%lld\n",
hmat_loc->flags, hmat_data_type(type), ipds, tpds,
hmat_loc->entry_base_unit);
inits = (u32 *)(hmat_loc + 1);
targs = inits + ipds;
entries = (u16 *)(targs + tpds);
for (init = 0; init < ipds; init++) {
alloc_memory_initiator(inits[init]);
for (targ = 0; targ < tpds; targ++) {
value = hmat_normalize(entries[init * tpds + targ],
hmat_loc->entry_base_unit,
type);
pr_info(" Initiator-Target[%u-%u]:%u%s\n",
inits[init], targs[targ], value,
hmat_data_type_suffix(type));
if (mem_hier == ACPI_HMAT_MEMORY) {
target = find_mem_target(targs[targ]);
if (target && target->processor_pxm == inits[init]) {
hmat_update_target_access(target, type, value, 0);
/* If the node has a CPU, update access 1 */
if (node_state(pxm_to_node(inits[init]), N_CPU))
hmat_update_target_access(target, type, value, 1);
}
}
}
}
if (mem_hier == ACPI_HMAT_MEMORY)
hmat_add_locality(hmat_loc);
return 0;
}
static __init int hmat_parse_cache(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_hmat_cache *cache = (void *)header;
struct memory_target *target;
struct target_cache *tcache;
u32 attrs;
if (cache->header.length < sizeof(*cache)) {
pr_notice("Unexpected cache header length: %u\n",
cache->header.length);
return -EINVAL;
}
attrs = cache->cache_attributes;
pr_info("Cache: Domain:%u Size:%llu Attrs:%08x SMBIOS Handles:%d\n",
cache->memory_PD, cache->cache_size, attrs,
cache->number_of_SMBIOShandles);
target = find_mem_target(cache->memory_PD);
if (!target)
return 0;
tcache = kzalloc(sizeof(*tcache), GFP_KERNEL);
if (!tcache) {
pr_notice_once("Failed to allocate HMAT cache info\n");
return 0;
}
tcache->cache_attrs.size = cache->cache_size;
tcache->cache_attrs.level = (attrs & ACPI_HMAT_CACHE_LEVEL) >> 4;
tcache->cache_attrs.line_size = (attrs & ACPI_HMAT_CACHE_LINE_SIZE) >> 16;
switch ((attrs & ACPI_HMAT_CACHE_ASSOCIATIVITY) >> 8) {
case ACPI_HMAT_CA_DIRECT_MAPPED:
tcache->cache_attrs.indexing = NODE_CACHE_DIRECT_MAP;
break;
case ACPI_HMAT_CA_COMPLEX_CACHE_INDEXING:
tcache->cache_attrs.indexing = NODE_CACHE_INDEXED;
break;
case ACPI_HMAT_CA_NONE:
default:
tcache->cache_attrs.indexing = NODE_CACHE_OTHER;
break;
}
switch ((attrs & ACPI_HMAT_WRITE_POLICY) >> 12) {
case ACPI_HMAT_CP_WB:
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_BACK;
break;
case ACPI_HMAT_CP_WT:
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_THROUGH;
break;
case ACPI_HMAT_CP_NONE:
default:
tcache->cache_attrs.write_policy = NODE_CACHE_WRITE_OTHER;
break;
}
list_add_tail(&tcache->node, &target->caches);
return 0;
}
static int __init hmat_parse_proximity_domain(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_hmat_proximity_domain *p = (void *)header;
struct memory_target *target = NULL;
if (p->header.length != sizeof(*p)) {
pr_notice("Unexpected address range header length: %u\n",
p->header.length);
return -EINVAL;
}
if (hmat_revision == 1)
pr_info("Memory (%#llx length %#llx) Flags:%04x Processor Domain:%u Memory Domain:%u\n",
p->reserved3, p->reserved4, p->flags, p->processor_PD,
p->memory_PD);
else
pr_info("Memory Flags:%04x Processor Domain:%u Memory Domain:%u\n",
p->flags, p->processor_PD, p->memory_PD);
if ((hmat_revision == 1 && p->flags & ACPI_HMAT_MEMORY_PD_VALID) ||
hmat_revision > 1) {
target = find_mem_target(p->memory_PD);
if (!target) {
pr_debug("Memory Domain missing from SRAT\n");
return -EINVAL;
}
}
if (target && p->flags & ACPI_HMAT_PROCESSOR_PD_VALID) {
int p_node = pxm_to_node(p->processor_PD);
if (p_node == NUMA_NO_NODE) {
pr_debug("Invalid Processor Domain\n");
return -EINVAL;
}
target->processor_pxm = p->processor_PD;
}
return 0;
}
static int __init hmat_parse_subtable(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_hmat_structure *hdr = (void *)header;
if (!hdr)
return -EINVAL;
switch (hdr->type) {
case ACPI_HMAT_TYPE_PROXIMITY:
return hmat_parse_proximity_domain(header, end);
case ACPI_HMAT_TYPE_LOCALITY:
return hmat_parse_locality(header, end);
case ACPI_HMAT_TYPE_CACHE:
return hmat_parse_cache(header, end);
default:
return -EINVAL;
}
}
static __init int srat_parse_mem_affinity(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_srat_mem_affinity *ma = (void *)header;
if (!ma)
return -EINVAL;
if (!(ma->flags & ACPI_SRAT_MEM_ENABLED))
return 0;
alloc_memory_target(ma->proximity_domain, ma->base_address, ma->length);
return 0;
}
static u32 hmat_initiator_perf(struct memory_target *target,
struct memory_initiator *initiator,
struct acpi_hmat_locality *hmat_loc)
{
unsigned int ipds, tpds, i, idx = 0, tdx = 0;
u32 *inits, *targs;
u16 *entries;
ipds = hmat_loc->number_of_initiator_Pds;
tpds = hmat_loc->number_of_target_Pds;
inits = (u32 *)(hmat_loc + 1);
targs = inits + ipds;
entries = (u16 *)(targs + tpds);
for (i = 0; i < ipds; i++) {
if (inits[i] == initiator->processor_pxm) {
idx = i;
break;
}
}
if (i == ipds)
return 0;
for (i = 0; i < tpds; i++) {
if (targs[i] == target->memory_pxm) {
tdx = i;
break;
}
}
if (i == tpds)
return 0;
return hmat_normalize(entries[idx * tpds + tdx],
hmat_loc->entry_base_unit,
hmat_loc->data_type);
}
static bool hmat_update_best(u8 type, u32 value, u32 *best)
{
bool updated = false;
if (!value)
return false;
switch (type) {
case ACPI_HMAT_ACCESS_LATENCY:
case ACPI_HMAT_READ_LATENCY:
case ACPI_HMAT_WRITE_LATENCY:
if (!*best || *best > value) {
*best = value;
updated = true;
}
break;
case ACPI_HMAT_ACCESS_BANDWIDTH:
case ACPI_HMAT_READ_BANDWIDTH:
case ACPI_HMAT_WRITE_BANDWIDTH:
if (!*best || *best < value) {
*best = value;
updated = true;
}
break;
}
return updated;
}
static int initiator_cmp(void *priv, const struct list_head *a,
const struct list_head *b)
{
struct memory_initiator *ia;
struct memory_initiator *ib;
ia = list_entry(a, struct memory_initiator, node);
ib = list_entry(b, struct memory_initiator, node);
return ia->processor_pxm - ib->processor_pxm;
}
static int initiators_to_nodemask(unsigned long *p_nodes)
{
struct memory_initiator *initiator;
if (list_empty(&initiators))
return -ENXIO;
list_for_each_entry(initiator, &initiators, node)
set_bit(initiator->processor_pxm, p_nodes);
return 0;
}
static void hmat_register_target_initiators(struct memory_target *target)
{
static DECLARE_BITMAP(p_nodes, MAX_NUMNODES);
struct memory_initiator *initiator;
unsigned int mem_nid, cpu_nid;
struct memory_locality *loc = NULL;
u32 best = 0;
bool access0done = false;
int i;
mem_nid = pxm_to_node(target->memory_pxm);
/*
* If the Address Range Structure provides a local processor pxm, link
* only that one. Otherwise, find the best performance attributes and
* register all initiators that match.
*/
if (target->processor_pxm != PXM_INVAL) {
cpu_nid = pxm_to_node(target->processor_pxm);
register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
access0done = true;
if (node_state(cpu_nid, N_CPU)) {
register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
return;
}
}
if (list_empty(&localities))
return;
/*
* We need the initiator list sorted so we can use bitmap_clear for
* previously set initiators when we find a better memory accessor.
* We'll also use the sorting to prime the candidate nodes with known
* initiators.
*/
bitmap_zero(p_nodes, MAX_NUMNODES);
list_sort(NULL, &initiators, initiator_cmp);
if (initiators_to_nodemask(p_nodes) < 0)
return;
if (!access0done) {
for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
loc = localities_types[i];
if (!loc)
continue;
best = 0;
list_for_each_entry(initiator, &initiators, node) {
u32 value;
if (!test_bit(initiator->processor_pxm, p_nodes))
continue;
value = hmat_initiator_perf(target, initiator,
loc->hmat_loc);
if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
bitmap_clear(p_nodes, 0, initiator->processor_pxm);
if (value != best)
clear_bit(initiator->processor_pxm, p_nodes);
}
if (best)
hmat_update_target_access(target, loc->hmat_loc->data_type,
best, 0);
}
for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
cpu_nid = pxm_to_node(i);
register_memory_node_under_compute_node(mem_nid, cpu_nid, 0);
}
}
/* Access 1 ignores Generic Initiators */
bitmap_zero(p_nodes, MAX_NUMNODES);
if (initiators_to_nodemask(p_nodes) < 0)
return;
for (i = WRITE_LATENCY; i <= READ_BANDWIDTH; i++) {
loc = localities_types[i];
if (!loc)
continue;
best = 0;
list_for_each_entry(initiator, &initiators, node) {
u32 value;
if (!initiator->has_cpu) {
clear_bit(initiator->processor_pxm, p_nodes);
continue;
}
if (!test_bit(initiator->processor_pxm, p_nodes))
continue;
value = hmat_initiator_perf(target, initiator, loc->hmat_loc);
if (hmat_update_best(loc->hmat_loc->data_type, value, &best))
bitmap_clear(p_nodes, 0, initiator->processor_pxm);
if (value != best)
clear_bit(initiator->processor_pxm, p_nodes);
}
if (best)
hmat_update_target_access(target, loc->hmat_loc->data_type, best, 1);
}
for_each_set_bit(i, p_nodes, MAX_NUMNODES) {
cpu_nid = pxm_to_node(i);
register_memory_node_under_compute_node(mem_nid, cpu_nid, 1);
}
}
static void hmat_register_target_cache(struct memory_target *target)
{
unsigned mem_nid = pxm_to_node(target->memory_pxm);
struct target_cache *tcache;
list_for_each_entry(tcache, &target->caches, node)
node_add_cache(mem_nid, &tcache->cache_attrs);
}
static void hmat_register_target_perf(struct memory_target *target, int access)
{
unsigned mem_nid = pxm_to_node(target->memory_pxm);
node_set_perf_attrs(mem_nid, &target->hmem_attrs[access], access);
}
static void hmat_register_target_devices(struct memory_target *target)
{
struct resource *res;
/*
* Do not bother creating devices if no driver is available to
* consume them.
*/
if (!IS_ENABLED(CONFIG_DEV_DAX_HMEM))
return;
for (res = target->memregions.child; res; res = res->sibling) {
int target_nid = pxm_to_node(target->memory_pxm);
hmem_register_device(target_nid, res);
}
}
static void hmat_register_target(struct memory_target *target)
{
int nid = pxm_to_node(target->memory_pxm);
/*
* Devices may belong to either an offline or online
* node, so unconditionally add them.
*/
hmat_register_target_devices(target);
/*
* Skip offline nodes. This can happen when memory
* marked EFI_MEMORY_SP, "specific purpose", is applied
* to all the memory in a proximity domain leading to
* the node being marked offline / unplugged, or if
* memory-only "hotplug" node is offline.
*/
if (nid == NUMA_NO_NODE || !node_online(nid))
return;
mutex_lock(&target_lock);
if (!target->registered) {
hmat_register_target_initiators(target);
hmat_register_target_cache(target);
hmat_register_target_perf(target, 0);
hmat_register_target_perf(target, 1);
target->registered = true;
}
mutex_unlock(&target_lock);
}
static void hmat_register_targets(void)
{
struct memory_target *target;
list_for_each_entry(target, &targets, node)
hmat_register_target(target);
}
static int hmat_callback(struct notifier_block *self,
unsigned long action, void *arg)
{
struct memory_target *target;
struct memory_notify *mnb = arg;
int pxm, nid = mnb->status_change_nid;
if (nid == NUMA_NO_NODE || action != MEM_ONLINE)
return NOTIFY_OK;
pxm = node_to_pxm(nid);
target = find_mem_target(pxm);
if (!target)
return NOTIFY_OK;
hmat_register_target(target);
return NOTIFY_OK;
}
static __init void hmat_free_structures(void)
{
struct memory_target *target, *tnext;
struct memory_locality *loc, *lnext;
struct memory_initiator *initiator, *inext;
struct target_cache *tcache, *cnext;
list_for_each_entry_safe(target, tnext, &targets, node) {
struct resource *res, *res_next;
list_for_each_entry_safe(tcache, cnext, &target->caches, node) {
list_del(&tcache->node);
kfree(tcache);
}
list_del(&target->node);
res = target->memregions.child;
while (res) {
res_next = res->sibling;
__release_region(&target->memregions, res->start,
resource_size(res));
res = res_next;
}
kfree(target);
}
list_for_each_entry_safe(initiator, inext, &initiators, node) {
list_del(&initiator->node);
kfree(initiator);
}
list_for_each_entry_safe(loc, lnext, &localities, node) {
list_del(&loc->node);
kfree(loc);
}
}
static __init int hmat_init(void)
{
struct acpi_table_header *tbl;
enum acpi_hmat_type i;
acpi_status status;
if (srat_disabled() || hmat_disable)
return 0;
status = acpi_get_table(ACPI_SIG_SRAT, 0, &tbl);
if (ACPI_FAILURE(status))
return 0;
if (acpi_table_parse_entries(ACPI_SIG_SRAT,
sizeof(struct acpi_table_srat),
ACPI_SRAT_TYPE_MEMORY_AFFINITY,
srat_parse_mem_affinity, 0) < 0)
goto out_put;
acpi_put_table(tbl);
status = acpi_get_table(ACPI_SIG_HMAT, 0, &tbl);
if (ACPI_FAILURE(status))
goto out_put;
hmat_revision = tbl->revision;
switch (hmat_revision) {
case 1:
case 2:
break;
default:
pr_notice("Ignoring: Unknown revision:%d\n", hmat_revision);
goto out_put;
}
for (i = ACPI_HMAT_TYPE_PROXIMITY; i < ACPI_HMAT_TYPE_RESERVED; i++) {
if (acpi_table_parse_entries(ACPI_SIG_HMAT,
sizeof(struct acpi_table_hmat), i,
hmat_parse_subtable, 0) < 0) {
pr_notice("Ignoring: Invalid table");
goto out_put;
}
}
hmat_register_targets();
/* Keep the table and structures if the notifier may use them */
if (!hotplug_memory_notifier(hmat_callback, HMAT_CALLBACK_PRI))
return 0;
out_put:
hmat_free_structures();
acpi_put_table(tbl);
return 0;
}
subsys_initcall(hmat_init);
|