summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/hisilicon/kirin/dw_drm_dsi.c
blob: 2eea9fb0e76bf3ead8f5914e6ebb65b5b3603b9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
// SPDX-License-Identifier: GPL-2.0-only
/*
 * DesignWare MIPI DSI Host Controller v1.02 driver
 *
 * Copyright (c) 2016 Linaro Limited.
 * Copyright (c) 2014-2016 HiSilicon Limited.
 *
 * Author:
 *	Xinliang Liu <z.liuxinliang@hisilicon.com>
 *	Xinliang Liu <xinliang.liu@linaro.org>
 *	Xinwei Kong <kong.kongxinwei@hisilicon.com>
 */

#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>

#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_device.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_simple_kms_helper.h>

#include "dw_dsi_reg.h"

#define MAX_TX_ESC_CLK		10
#define ROUND(x, y)		((x) / (y) + \
				((x) % (y) * 10 / (y) >= 5 ? 1 : 0))
#define PHY_REF_CLK_RATE	19200000
#define PHY_REF_CLK_PERIOD_PS	(1000000000 / (PHY_REF_CLK_RATE / 1000))

#define encoder_to_dsi(encoder) \
	container_of(encoder, struct dw_dsi, encoder)
#define host_to_dsi(host) \
	container_of(host, struct dw_dsi, host)

struct mipi_phy_params {
	u32 clk_t_lpx;
	u32 clk_t_hs_prepare;
	u32 clk_t_hs_zero;
	u32 clk_t_hs_trial;
	u32 clk_t_wakeup;
	u32 data_t_lpx;
	u32 data_t_hs_prepare;
	u32 data_t_hs_zero;
	u32 data_t_hs_trial;
	u32 data_t_ta_go;
	u32 data_t_ta_get;
	u32 data_t_wakeup;
	u32 hstx_ckg_sel;
	u32 pll_fbd_div5f;
	u32 pll_fbd_div1f;
	u32 pll_fbd_2p;
	u32 pll_enbwt;
	u32 pll_fbd_p;
	u32 pll_fbd_s;
	u32 pll_pre_div1p;
	u32 pll_pre_p;
	u32 pll_vco_750M;
	u32 pll_lpf_rs;
	u32 pll_lpf_cs;
	u32 clklp2hs_time;
	u32 clkhs2lp_time;
	u32 lp2hs_time;
	u32 hs2lp_time;
	u32 clk_to_data_delay;
	u32 data_to_clk_delay;
	u32 lane_byte_clk_kHz;
	u32 clk_division;
};

struct dsi_hw_ctx {
	void __iomem *base;
	struct clk *pclk;
};

struct dw_dsi {
	struct drm_encoder encoder;
	struct device *dev;
	struct mipi_dsi_host host;
	struct drm_display_mode cur_mode;
	struct dsi_hw_ctx *ctx;
	struct mipi_phy_params phy;

	u32 lanes;
	enum mipi_dsi_pixel_format format;
	unsigned long mode_flags;
	bool enable;
};

struct dsi_data {
	struct dw_dsi dsi;
	struct dsi_hw_ctx ctx;
};

struct dsi_phy_range {
	u32 min_range_kHz;
	u32 max_range_kHz;
	u32 pll_vco_750M;
	u32 hstx_ckg_sel;
};

static const struct dsi_phy_range dphy_range_info[] = {
	{   46875,    62500,   1,    7 },
	{   62500,    93750,   0,    7 },
	{   93750,   125000,   1,    6 },
	{  125000,   187500,   0,    6 },
	{  187500,   250000,   1,    5 },
	{  250000,   375000,   0,    5 },
	{  375000,   500000,   1,    4 },
	{  500000,   750000,   0,    4 },
	{  750000,  1000000,   1,    0 },
	{ 1000000,  1500000,   0,    0 }
};

static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy)
{
	u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
	u32 tmp_kHz = req_kHz;
	u32 i = 0;
	u32 q_pll = 1;
	u32 m_pll = 0;
	u32 n_pll = 0;
	u32 r_pll = 1;
	u32 m_n = 0;
	u32 m_n_int = 0;
	u32 f_kHz = 0;
	u64 temp;

	/*
	 * Find a rate >= req_kHz.
	 */
	do {
		f_kHz = tmp_kHz;

		for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++)
			if (f_kHz >= dphy_range_info[i].min_range_kHz &&
			    f_kHz <= dphy_range_info[i].max_range_kHz)
				break;

		if (i == ARRAY_SIZE(dphy_range_info)) {
			DRM_ERROR("%dkHz out of range\n", f_kHz);
			return 0;
		}

		phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M;
		phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel;

		if (phy->hstx_ckg_sel <= 7 &&
		    phy->hstx_ckg_sel >= 4)
			q_pll = 0x10 >> (7 - phy->hstx_ckg_sel);

		temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps;
		m_n_int = div64_u64_rem(temp, 1000000000, &temp);
		m_n = div_u64(temp, 100000000);

		if (m_n_int % 2 == 0) {
			if (m_n * 6 >= 50) {
				n_pll = 2;
				m_pll = (m_n_int + 1) * n_pll;
			} else if (m_n * 6 >= 30) {
				n_pll = 3;
				m_pll = m_n_int * n_pll + 2;
			} else {
				n_pll = 1;
				m_pll = m_n_int * n_pll;
			}
		} else {
			if (m_n * 6 >= 50) {
				n_pll = 1;
				m_pll = (m_n_int + 1) * n_pll;
			} else if (m_n * 6 >= 30) {
				n_pll = 1;
				m_pll = (m_n_int + 1) * n_pll;
			} else if (m_n * 6 >= 10) {
				n_pll = 3;
				m_pll = m_n_int * n_pll + 1;
			} else {
				n_pll = 2;
				m_pll = m_n_int * n_pll;
			}
		}

		if (n_pll == 1) {
			phy->pll_fbd_p = 0;
			phy->pll_pre_div1p = 1;
		} else {
			phy->pll_fbd_p = n_pll;
			phy->pll_pre_div1p = 0;
		}

		if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4)
			r_pll = 0x10 >> (7 - phy->pll_fbd_2p);

		if (m_pll == 2) {
			phy->pll_pre_p = 0;
			phy->pll_fbd_s = 0;
			phy->pll_fbd_div1f = 0;
			phy->pll_fbd_div5f = 1;
		} else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) {
			phy->pll_pre_p = m_pll / (2 * r_pll);
			phy->pll_fbd_s = 0;
			phy->pll_fbd_div1f = 1;
			phy->pll_fbd_div5f = 0;
		} else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) {
			if (((m_pll / (2 * r_pll)) % 2) == 0) {
				phy->pll_pre_p =
					(m_pll / (2 * r_pll)) / 2 - 1;
				phy->pll_fbd_s =
					(m_pll / (2 * r_pll)) % 2 + 2;
			} else {
				phy->pll_pre_p =
					(m_pll / (2 * r_pll)) / 2;
				phy->pll_fbd_s =
					(m_pll / (2 * r_pll)) % 2;
			}
			phy->pll_fbd_div1f = 0;
			phy->pll_fbd_div5f = 0;
		} else {
			phy->pll_pre_p = 0;
			phy->pll_fbd_s = 0;
			phy->pll_fbd_div1f = 0;
			phy->pll_fbd_div5f = 1;
		}

		f_kHz = div64_u64((u64)1000000000 * (u64)m_pll,
				  (u64)ref_clk_ps * (u64)n_pll * (u64)q_pll);
		if (f_kHz >= req_kHz)
			break;

		tmp_kHz += 10;

	} while (true);

	return f_kHz;
}

static void dsi_get_phy_params(u32 phy_req_kHz,
			       struct mipi_phy_params *phy)
{
	u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS;
	u32 phy_rate_kHz;
	u32 ui;

	memset(phy, 0, sizeof(*phy));

	phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy);
	if (!phy_rate_kHz)
		return;

	ui = 1000000 / phy_rate_kHz;

	phy->clk_t_lpx = ROUND(50, 8 * ui);
	phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1;

	phy->clk_t_hs_zero = ROUND(262, 8 * ui);
	phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1);
	phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1);
	if (phy->clk_t_wakeup > 0xff)
		phy->clk_t_wakeup = 0xff;
	phy->data_t_wakeup = phy->clk_t_wakeup;
	phy->data_t_lpx = phy->clk_t_lpx;
	phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1;
	phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui);
	phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1);
	phy->data_t_ta_go = 3;
	phy->data_t_ta_get = 4;

	phy->pll_enbwt = 1;
	phy->clklp2hs_time = ROUND(407, 8 * ui) + 12;
	phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui);
	phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1;
	phy->hs2lp_time = phy->clkhs2lp_time;
	phy->clk_to_data_delay = 1 + phy->clklp2hs_time;
	phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) +
				phy->clkhs2lp_time;

	phy->lane_byte_clk_kHz = phy_rate_kHz / 8;
	phy->clk_division =
		DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK);
}

static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format)
{
	u32 val;

	/*
	 * TODO: only support RGB888 now, to support more
	 */
	switch (format) {
	case MIPI_DSI_FMT_RGB888:
		val = DSI_24BITS_1;
		break;
	default:
		val = DSI_24BITS_1;
		break;
	}

	return val;
}

/*
 * dsi phy reg write function
 */
static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val)
{
	u32 reg_write = 0x10000 + reg;

	/*
	 * latch reg first
	 */
	writel(reg_write, base + PHY_TST_CTRL1);
	writel(0x02, base + PHY_TST_CTRL0);
	writel(0x00, base + PHY_TST_CTRL0);

	/*
	 * then latch value
	 */
	writel(val, base + PHY_TST_CTRL1);
	writel(0x02, base + PHY_TST_CTRL0);
	writel(0x00, base + PHY_TST_CTRL0);
}

static void dsi_set_phy_timer(void __iomem *base,
			      struct mipi_phy_params *phy,
			      u32 lanes)
{
	u32 val;

	/*
	 * Set lane value and phy stop wait time.
	 */
	val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8);
	writel(val, base + PHY_IF_CFG);

	/*
	 * Set phy clk division.
	 */
	val = readl(base + CLKMGR_CFG) | phy->clk_division;
	writel(val, base + CLKMGR_CFG);

	/*
	 * Set lp and hs switching params.
	 */
	dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time);
	dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time);
	dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10),
		       phy->clkhs2lp_time);
	dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10),
		       phy->clklp2hs_time);
	dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8),
		       phy->data_to_clk_delay);
	dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8),
		       phy->clk_to_data_delay);
}

static void dsi_set_mipi_phy(void __iomem *base,
			     struct mipi_phy_params *phy,
			     u32 lanes)
{
	u32 delay_count;
	u32 val;
	u32 i;

	/* phy timer setting */
	dsi_set_phy_timer(base, phy, lanes);

	/*
	 * Reset to clean up phy tst params.
	 */
	writel(0, base + PHY_RSTZ);
	writel(0, base + PHY_TST_CTRL0);
	writel(1, base + PHY_TST_CTRL0);
	writel(0, base + PHY_TST_CTRL0);

	/*
	 * Clock lane timing control setting: TLPX, THS-PREPARE,
	 * THS-ZERO, THS-TRAIL, TWAKEUP.
	 */
	dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx);
	dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare);
	dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero);
	dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial);
	dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup);

	/*
	 * Data lane timing control setting: TLPX, THS-PREPARE,
	 * THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP.
	 */
	for (i = 0; i < lanes; i++) {
		dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx);
		dsi_phy_tst_set(base, DATA_THS_PREPARE(i),
				phy->data_t_hs_prepare);
		dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero);
		dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial);
		dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go);
		dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get);
		dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup);
	}

	/*
	 * physical configuration: I, pll I, pll II, pll III,
	 * pll IV, pll V.
	 */
	dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel);
	val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) +
				(phy->pll_fbd_2p << 1) + phy->pll_enbwt;
	dsi_phy_tst_set(base, PHY_CFG_PLL_I, val);
	dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p);
	dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s);
	val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p;
	dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val);
	val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) +
		phy->pll_lpf_cs;
	dsi_phy_tst_set(base, PHY_CFG_PLL_V, val);

	writel(PHY_ENABLECLK, base + PHY_RSTZ);
	udelay(1);
	writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
	udelay(1);
	writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ);
	usleep_range(1000, 1500);

	/*
	 * wait for phy's clock ready
	 */
	delay_count = 100;
	while (delay_count) {
		val = readl(base +  PHY_STATUS);
		if ((BIT(0) | BIT(2)) & val)
			break;

		udelay(1);
		delay_count--;
	}

	if (!delay_count)
		DRM_INFO("phylock and phystopstateclklane is not ready.\n");
}

static void dsi_set_mode_timing(void __iomem *base,
				u32 lane_byte_clk_kHz,
				struct drm_display_mode *mode,
				enum mipi_dsi_pixel_format format)
{
	u32 hfp, hbp, hsw, vfp, vbp, vsw;
	u32 hline_time;
	u32 hsa_time;
	u32 hbp_time;
	u32 pixel_clk_kHz;
	int htot, vtot;
	u32 val;
	u64 tmp;

	val = dsi_get_dpi_color_coding(format);
	writel(val, base + DPI_COLOR_CODING);

	val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2;
	val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1;
	writel(val, base +  DPI_CFG_POL);

	/*
	 * The DSI IP accepts vertical timing using lines as normal,
	 * but horizontal timing is a mixture of pixel-clocks for the
	 * active region and byte-lane clocks for the blanking-related
	 * timings.  hfp is specified as the total hline_time in byte-
	 * lane clocks minus hsa, hbp and active.
	 */
	pixel_clk_kHz = mode->clock;
	htot = mode->htotal;
	vtot = mode->vtotal;
	hfp = mode->hsync_start - mode->hdisplay;
	hbp = mode->htotal - mode->hsync_end;
	hsw = mode->hsync_end - mode->hsync_start;
	vfp = mode->vsync_start - mode->vdisplay;
	vbp = mode->vtotal - mode->vsync_end;
	vsw = mode->vsync_end - mode->vsync_start;
	if (vsw > 15) {
		DRM_DEBUG_DRIVER("vsw exceeded 15\n");
		vsw = 15;
	}

	hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz;
	hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz;
	tmp = (u64)htot * (u64)lane_byte_clk_kHz;
	hline_time = DIV_ROUND_UP_ULL(tmp, pixel_clk_kHz);

	/* all specified in byte-lane clocks */
	writel(hsa_time, base + VID_HSA_TIME);
	writel(hbp_time, base + VID_HBP_TIME);
	writel(hline_time, base + VID_HLINE_TIME);

	writel(vsw, base + VID_VSA_LINES);
	writel(vbp, base + VID_VBP_LINES);
	writel(vfp, base + VID_VFP_LINES);
	writel(mode->vdisplay, base + VID_VACTIVE_LINES);
	writel(mode->hdisplay, base + VID_PKT_SIZE);

	DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n",
			 htot, hfp, hbp, hsw);
	DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n",
			 vtot, vfp, vbp, vsw);
	DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n",
			 hsa_time, hbp_time, hline_time);
}

static void dsi_set_video_mode(void __iomem *base, unsigned long flags)
{
	u32 val;
	u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
		MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
	u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO |
		MIPI_DSI_MODE_VIDEO_SYNC_PULSE;
	u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO;

	/*
	 * choose video mode type
	 */
	if ((flags & mode_mask) == non_burst_sync_pulse)
		val = DSI_NON_BURST_SYNC_PULSES;
	else if ((flags & mode_mask) == non_burst_sync_event)
		val = DSI_NON_BURST_SYNC_EVENTS;
	else
		val = DSI_BURST_SYNC_PULSES_1;
	writel(val, base + VID_MODE_CFG);

	writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL);
	writel(DSI_VIDEO_MODE, base + MODE_CFG);
}

static void dsi_mipi_init(struct dw_dsi *dsi)
{
	struct dsi_hw_ctx *ctx = dsi->ctx;
	struct mipi_phy_params *phy = &dsi->phy;
	struct drm_display_mode *mode = &dsi->cur_mode;
	u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
	void __iomem *base = ctx->base;
	u32 dphy_req_kHz;

	/*
	 * count phy params
	 */
	dphy_req_kHz = mode->clock * bpp / dsi->lanes;
	dsi_get_phy_params(dphy_req_kHz, phy);

	/* reset Core */
	writel(RESET, base + PWR_UP);

	/* set dsi phy params */
	dsi_set_mipi_phy(base, phy, dsi->lanes);

	/* set dsi mode timing */
	dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format);

	/* set dsi video mode */
	dsi_set_video_mode(base, dsi->mode_flags);

	/* dsi wake up */
	writel(POWERUP, base + PWR_UP);

	DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n",
			 dsi->lanes, mode->clock, phy->lane_byte_clk_kHz);
}

static void dsi_encoder_disable(struct drm_encoder *encoder)
{
	struct dw_dsi *dsi = encoder_to_dsi(encoder);
	struct dsi_hw_ctx *ctx = dsi->ctx;
	void __iomem *base = ctx->base;

	if (!dsi->enable)
		return;

	writel(0, base + PWR_UP);
	writel(0, base + LPCLK_CTRL);
	writel(0, base + PHY_RSTZ);
	clk_disable_unprepare(ctx->pclk);

	dsi->enable = false;
}

static void dsi_encoder_enable(struct drm_encoder *encoder)
{
	struct dw_dsi *dsi = encoder_to_dsi(encoder);
	struct dsi_hw_ctx *ctx = dsi->ctx;
	int ret;

	if (dsi->enable)
		return;

	ret = clk_prepare_enable(ctx->pclk);
	if (ret) {
		DRM_ERROR("fail to enable pclk: %d\n", ret);
		return;
	}

	dsi_mipi_init(dsi);

	dsi->enable = true;
}

static enum drm_mode_status dsi_encoder_phy_mode_valid(
					struct drm_encoder *encoder,
					const struct drm_display_mode *mode)
{
	struct dw_dsi *dsi = encoder_to_dsi(encoder);
	struct mipi_phy_params phy;
	u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
	u32 req_kHz, act_kHz, lane_byte_clk_kHz;

	/* Calculate the lane byte clk using the adjusted mode clk */
	memset(&phy, 0, sizeof(phy));
	req_kHz = mode->clock * bpp / dsi->lanes;
	act_kHz = dsi_calc_phy_rate(req_kHz, &phy);
	lane_byte_clk_kHz = act_kHz / 8;

	DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...",
			mode->hdisplay, mode->vdisplay, bpp,
			drm_mode_vrefresh(mode), mode->clock);

	/*
	 * Make sure the adjusted mode clock and the lane byte clk
	 * have a common denominator base frequency
	 */
	if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) {
		DRM_DEBUG_DRIVER("OK!\n");
		return MODE_OK;
	}

	DRM_DEBUG_DRIVER("BAD!\n");
	return MODE_BAD;
}

static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder,
					const struct drm_display_mode *mode)

{
	const struct drm_crtc_helper_funcs *crtc_funcs = NULL;
	struct drm_crtc *crtc = NULL;
	struct drm_display_mode adj_mode;
	enum drm_mode_status ret;

	/*
	 * The crtc might adjust the mode, so go through the
	 * possible crtcs (technically just one) and call
	 * mode_fixup to figure out the adjusted mode before we
	 * validate it.
	 */
	drm_for_each_crtc(crtc, encoder->dev) {
		/*
		 * reset adj_mode to the mode value each time,
		 * so we don't adjust the mode twice
		 */
		drm_mode_init(&adj_mode, mode);

		crtc_funcs = crtc->helper_private;
		if (crtc_funcs && crtc_funcs->mode_fixup)
			if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode))
				return MODE_BAD;

		ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode);
		if (ret != MODE_OK)
			return ret;
	}
	return MODE_OK;
}

static void dsi_encoder_mode_set(struct drm_encoder *encoder,
				 struct drm_display_mode *mode,
				 struct drm_display_mode *adj_mode)
{
	struct dw_dsi *dsi = encoder_to_dsi(encoder);

	drm_mode_copy(&dsi->cur_mode, adj_mode);
}

static int dsi_encoder_atomic_check(struct drm_encoder *encoder,
				    struct drm_crtc_state *crtc_state,
				    struct drm_connector_state *conn_state)
{
	/* do nothing */
	return 0;
}

static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = {
	.atomic_check	= dsi_encoder_atomic_check,
	.mode_valid	= dsi_encoder_mode_valid,
	.mode_set	= dsi_encoder_mode_set,
	.enable		= dsi_encoder_enable,
	.disable	= dsi_encoder_disable
};

static int dw_drm_encoder_init(struct device *dev,
			       struct drm_device *drm_dev,
			       struct drm_encoder *encoder)
{
	int ret;
	u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node);

	if (!crtc_mask) {
		DRM_ERROR("failed to find crtc mask\n");
		return -EINVAL;
	}

	encoder->possible_crtcs = crtc_mask;
	ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI);
	if (ret) {
		DRM_ERROR("failed to init dsi encoder\n");
		return ret;
	}

	drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs);

	return 0;
}

static const struct component_ops dsi_ops;
static int dsi_host_attach(struct mipi_dsi_host *host,
			   struct mipi_dsi_device *mdsi)
{
	struct dw_dsi *dsi = host_to_dsi(host);
	struct device *dev = host->dev;
	int ret;

	if (mdsi->lanes < 1 || mdsi->lanes > 4) {
		DRM_ERROR("dsi device params invalid\n");
		return -EINVAL;
	}

	dsi->lanes = mdsi->lanes;
	dsi->format = mdsi->format;
	dsi->mode_flags = mdsi->mode_flags;

	ret = component_add(dev, &dsi_ops);
	if (ret)
		return ret;

	return 0;
}

static int dsi_host_detach(struct mipi_dsi_host *host,
			   struct mipi_dsi_device *mdsi)
{
	struct device *dev = host->dev;

	component_del(dev, &dsi_ops);

	return 0;
}

static const struct mipi_dsi_host_ops dsi_host_ops = {
	.attach = dsi_host_attach,
	.detach = dsi_host_detach,
};

static int dsi_host_init(struct device *dev, struct dw_dsi *dsi)
{
	struct mipi_dsi_host *host = &dsi->host;
	int ret;

	host->dev = dev;
	host->ops = &dsi_host_ops;
	ret = mipi_dsi_host_register(host);
	if (ret) {
		DRM_ERROR("failed to register dsi host\n");
		return ret;
	}

	return 0;
}

static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi)
{
	struct drm_encoder *encoder = &dsi->encoder;
	struct drm_bridge *bridge;
	struct device_node *np = dsi->dev->of_node;
	int ret;

	/*
	 * Get the endpoint node. In our case, dsi has one output port1
	 * to which the external HDMI bridge is connected.
	 */
	ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &bridge);
	if (ret)
		return ret;

	/* associate the bridge to dsi encoder */
	return drm_bridge_attach(encoder, bridge, NULL, 0);
}

static int dsi_bind(struct device *dev, struct device *master, void *data)
{
	struct dsi_data *ddata = dev_get_drvdata(dev);
	struct dw_dsi *dsi = &ddata->dsi;
	struct drm_device *drm_dev = data;
	int ret;

	ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder);
	if (ret)
		return ret;

	ret = dsi_bridge_init(drm_dev, dsi);
	if (ret)
		return ret;

	return 0;
}

static void dsi_unbind(struct device *dev, struct device *master, void *data)
{
	/* do nothing */
}

static const struct component_ops dsi_ops = {
	.bind	= dsi_bind,
	.unbind	= dsi_unbind,
};

static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi)
{
	struct dsi_hw_ctx *ctx = dsi->ctx;
	struct resource *res;

	ctx->pclk = devm_clk_get(&pdev->dev, "pclk");
	if (IS_ERR(ctx->pclk)) {
		DRM_ERROR("failed to get pclk clock\n");
		return PTR_ERR(ctx->pclk);
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ctx->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(ctx->base)) {
		DRM_ERROR("failed to remap dsi io region\n");
		return PTR_ERR(ctx->base);
	}

	return 0;
}

static int dsi_probe(struct platform_device *pdev)
{
	struct dsi_data *data;
	struct dw_dsi *dsi;
	struct dsi_hw_ctx *ctx;
	int ret;

	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
	if (!data) {
		DRM_ERROR("failed to allocate dsi data.\n");
		return -ENOMEM;
	}
	dsi = &data->dsi;
	ctx = &data->ctx;
	dsi->ctx = ctx;
	dsi->dev = &pdev->dev;

	ret = dsi_parse_dt(pdev, dsi);
	if (ret)
		return ret;

	platform_set_drvdata(pdev, data);

	ret = dsi_host_init(&pdev->dev, dsi);
	if (ret)
		return ret;

	return 0;
}

static void dsi_remove(struct platform_device *pdev)
{
	struct dsi_data *data = platform_get_drvdata(pdev);
	struct dw_dsi *dsi = &data->dsi;

	mipi_dsi_host_unregister(&dsi->host);
}

static const struct of_device_id dsi_of_match[] = {
	{.compatible = "hisilicon,hi6220-dsi"},
	{ }
};
MODULE_DEVICE_TABLE(of, dsi_of_match);

static struct platform_driver dsi_driver = {
	.probe = dsi_probe,
	.remove = dsi_remove,
	.driver = {
		.name = "dw-dsi",
		.of_match_table = dsi_of_match,
	},
};

module_platform_driver(dsi_driver);

MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>");
MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>");
MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>");
MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver");
MODULE_LICENSE("GPL v2");