summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/xe/xe_devcoredump.c
blob: 0b0cd6aa1d9fb4663454c0d921096a021dbf1de6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2023 Intel Corporation
 */

#include "xe_devcoredump.h"
#include "xe_devcoredump_types.h"

#include <linux/ascii85.h>
#include <linux/devcoredump.h>
#include <generated/utsrelease.h>

#include <drm/drm_managed.h>

#include "xe_device.h"
#include "xe_exec_queue.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_guc_capture.h"
#include "xe_guc_ct.h"
#include "xe_guc_log.h"
#include "xe_guc_submit.h"
#include "xe_hw_engine.h"
#include "xe_module.h"
#include "xe_pm.h"
#include "xe_sched_job.h"
#include "xe_vm.h"

/**
 * DOC: Xe device coredump
 *
 * Devices overview:
 * Xe uses dev_coredump infrastructure for exposing the crash errors in a
 * standardized way.
 * devcoredump exposes a temporary device under /sys/class/devcoredump/
 * which is linked with our card device directly.
 * The core dump can be accessed either from
 * /sys/class/drm/card<n>/device/devcoredump/ or from
 * /sys/class/devcoredump/devcd<m> where
 * /sys/class/devcoredump/devcd<m>/failing_device is a link to
 * /sys/class/drm/card<n>/device/.
 *
 * Snapshot at hang:
 * The 'data' file is printed with a drm_printer pointer at devcoredump read
 * time. For this reason, we need to take snapshots from when the hang has
 * happened, and not only when the user is reading the file. Otherwise the
 * information is outdated since the resets might have happened in between.
 *
 * 'First' failure snapshot:
 * In general, the first hang is the most critical one since the following hangs
 * can be a consequence of the initial hang. For this reason we only take the
 * snapshot of the 'first' failure and ignore subsequent calls of this function,
 * at least while the coredump device is alive. Dev_coredump has a delayed work
 * queue that will eventually delete the device and free all the dump
 * information.
 */

#ifdef CONFIG_DEV_COREDUMP

/* 1 hour timeout */
#define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)

static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
{
	return container_of(coredump, struct xe_device, devcoredump);
}

static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
{
	return &q->gt->uc.guc;
}

static ssize_t __xe_devcoredump_read(char *buffer, size_t count,
				     struct xe_devcoredump *coredump)
{
	struct xe_device *xe;
	struct xe_devcoredump_snapshot *ss;
	struct drm_printer p;
	struct drm_print_iterator iter;
	struct timespec64 ts;
	int i;

	xe = coredump_to_xe(coredump);
	ss = &coredump->snapshot;

	iter.data = buffer;
	iter.start = 0;
	iter.remain = count;

	p = drm_coredump_printer(&iter);

	drm_puts(&p, "**** Xe Device Coredump ****\n");
	drm_puts(&p, "kernel: " UTS_RELEASE "\n");
	drm_puts(&p, "module: " KBUILD_MODNAME "\n");

	ts = ktime_to_timespec64(ss->snapshot_time);
	drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
	ts = ktime_to_timespec64(ss->boot_time);
	drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
	drm_printf(&p, "Process: %s\n", ss->process_name);
	xe_device_snapshot_print(xe, &p);

	drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
	drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);

	drm_puts(&p, "\n**** GuC Log ****\n");
	xe_guc_log_snapshot_print(ss->guc.log, &p);
	drm_puts(&p, "\n**** GuC CT ****\n");
	xe_guc_ct_snapshot_print(ss->guc.ct, &p);

	drm_puts(&p, "\n**** Contexts ****\n");
	xe_guc_exec_queue_snapshot_print(ss->ge, &p);

	drm_puts(&p, "\n**** Job ****\n");
	xe_sched_job_snapshot_print(ss->job, &p);

	drm_puts(&p, "\n**** HW Engines ****\n");
	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
		if (ss->hwe[i])
			xe_engine_snapshot_print(ss->hwe[i], &p);

	drm_puts(&p, "\n**** VM state ****\n");
	xe_vm_snapshot_print(ss->vm, &p);

	return count - iter.remain;
}

static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
{
	int i;

	xe_guc_log_snapshot_free(ss->guc.log);
	ss->guc.log = NULL;

	xe_guc_ct_snapshot_free(ss->guc.ct);
	ss->guc.ct = NULL;

	xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
	ss->matched_node = NULL;

	xe_guc_exec_queue_snapshot_free(ss->ge);
	ss->ge = NULL;

	xe_sched_job_snapshot_free(ss->job);
	ss->job = NULL;

	for (i = 0; i < XE_NUM_HW_ENGINES; i++)
		if (ss->hwe[i]) {
			xe_hw_engine_snapshot_free(ss->hwe[i]);
			ss->hwe[i] = NULL;
		}

	xe_vm_snapshot_free(ss->vm);
	ss->vm = NULL;
}

static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
{
	struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
	struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
	struct xe_device *xe = coredump_to_xe(coredump);
	unsigned int fw_ref;

	xe_pm_runtime_get(xe);

	/* keep going if fw fails as we still want to save the memory and SW data */
	fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
	if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
		xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
	xe_vm_snapshot_capture_delayed(ss->vm);
	xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
	xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);

	xe_pm_runtime_put(xe);

	/* Calculate devcoredump size */
	ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump);

	ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
	if (!ss->read.buffer)
		return;

	__xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump);
	xe_devcoredump_snapshot_free(ss);
}

static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
				   size_t count, void *data, size_t datalen)
{
	struct xe_devcoredump *coredump = data;
	struct xe_devcoredump_snapshot *ss;
	ssize_t byte_copied;

	if (!coredump)
		return -ENODEV;

	ss = &coredump->snapshot;

	/* Ensure delayed work is captured before continuing */
	flush_work(&ss->work);

	if (!ss->read.buffer)
		return -ENODEV;

	if (offset >= ss->read.size)
		return 0;

	byte_copied = count < ss->read.size - offset ? count :
		ss->read.size - offset;
	memcpy(buffer, ss->read.buffer + offset, byte_copied);

	return byte_copied;
}

static void xe_devcoredump_free(void *data)
{
	struct xe_devcoredump *coredump = data;

	/* Our device is gone. Nothing to do... */
	if (!data || !coredump_to_xe(coredump))
		return;

	cancel_work_sync(&coredump->snapshot.work);

	xe_devcoredump_snapshot_free(&coredump->snapshot);
	kvfree(coredump->snapshot.read.buffer);

	/* To prevent stale data on next snapshot, clear everything */
	memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
	coredump->captured = false;
	coredump->job = NULL;
	drm_info(&coredump_to_xe(coredump)->drm,
		 "Xe device coredump has been deleted.\n");
}

static void devcoredump_snapshot(struct xe_devcoredump *coredump,
				 struct xe_sched_job *job)
{
	struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
	struct xe_exec_queue *q = job->q;
	struct xe_guc *guc = exec_queue_to_guc(q);
	u32 adj_logical_mask = q->logical_mask;
	u32 width_mask = (0x1 << q->width) - 1;
	const char *process_name = "no process";

	unsigned int fw_ref;
	bool cookie;
	int i;

	ss->snapshot_time = ktime_get_real();
	ss->boot_time = ktime_get_boottime();

	if (q->vm && q->vm->xef)
		process_name = q->vm->xef->process_name;
	strscpy(ss->process_name, process_name);

	ss->gt = q->gt;
	coredump->job = job;
	INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);

	cookie = dma_fence_begin_signalling();
	for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
		if (adj_logical_mask & BIT(i)) {
			adj_logical_mask |= width_mask << i;
			i += q->width;
		} else {
			++i;
		}
	}

	/* keep going if fw fails as we still want to save the memory and SW data */
	fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);

	ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
	ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
	ss->ge = xe_guc_exec_queue_snapshot_capture(q);
	ss->job = xe_sched_job_snapshot_capture(job);
	ss->vm = xe_vm_snapshot_capture(q->vm);

	xe_engine_snapshot_capture_for_job(job);

	queue_work(system_unbound_wq, &ss->work);

	xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
	dma_fence_end_signalling(cookie);
}

/**
 * xe_devcoredump - Take the required snapshots and initialize coredump device.
 * @job: The faulty xe_sched_job, where the issue was detected.
 *
 * This function should be called at the crash time within the serialized
 * gt_reset. It is skipped if we still have the core dump device available
 * with the information of the 'first' snapshot.
 */
void xe_devcoredump(struct xe_sched_job *job)
{
	struct xe_device *xe = gt_to_xe(job->q->gt);
	struct xe_devcoredump *coredump = &xe->devcoredump;

	if (coredump->captured) {
		drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
		return;
	}

	coredump->captured = true;
	devcoredump_snapshot(coredump, job);

	drm_info(&xe->drm, "Xe device coredump has been created\n");
	drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
		 xe->drm.primary->index);

	dev_coredumpm_timeout(xe->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
			      xe_devcoredump_read, xe_devcoredump_free,
			      XE_COREDUMP_TIMEOUT_JIFFIES);
}

static void xe_driver_devcoredump_fini(void *arg)
{
	struct drm_device *drm = arg;

	dev_coredump_put(drm->dev);
}

int xe_devcoredump_init(struct xe_device *xe)
{
	return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
}

#endif

/**
 * xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
 *
 * The output is split to multiple lines because some print targets, e.g. dmesg
 * cannot handle arbitrarily long lines. Note also that printing to dmesg in
 * piece-meal fashion is not possible, each separate call to drm_puts() has a
 * line-feed automatically added! Therefore, the entire output line must be
 * constructed in a local buffer first, then printed in one atomic output call.
 *
 * There is also a scheduler yield call to prevent the 'task has been stuck for
 * 120s' kernel hang check feature from firing when printing to a slow target
 * such as dmesg over a serial port.
 *
 * TODO: Add compression prior to the ASCII85 encoding to shrink huge buffers down.
 *
 * @p: the printer object to output to
 * @prefix: optional prefix to add to output string
 * @blob: the Binary Large OBject to dump out
 * @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
 * @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
 */
void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix,
			   const void *blob, size_t offset, size_t size)
{
	const u32 *blob32 = (const u32 *)blob;
	char buff[ASCII85_BUFSZ], *line_buff;
	size_t line_pos = 0;

#define DMESG_MAX_LINE_LEN	800
#define MIN_SPACE		(ASCII85_BUFSZ + 2)		/* 85 + "\n\0" */

	if (size & 3)
		drm_printf(p, "Size not word aligned: %zu", size);
	if (offset & 3)
		drm_printf(p, "Offset not word aligned: %zu", size);

	line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL);
	if (IS_ERR_OR_NULL(line_buff)) {
		drm_printf(p, "Failed to allocate line buffer: %pe", line_buff);
		return;
	}

	blob32 += offset / sizeof(*blob32);
	size /= sizeof(*blob32);

	if (prefix) {
		strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
		line_pos = strlen(line_buff);

		line_buff[line_pos++] = ':';
		line_buff[line_pos++] = ' ';
	}

	while (size--) {
		u32 val = *(blob32++);

		strscpy(line_buff + line_pos, ascii85_encode(val, buff),
			DMESG_MAX_LINE_LEN - line_pos);
		line_pos += strlen(line_buff + line_pos);

		if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
			line_buff[line_pos++] = '\n';
			line_buff[line_pos++] = 0;

			drm_puts(p, line_buff);

			line_pos = 0;

			/* Prevent 'stuck thread' time out errors */
			cond_resched();
		}
	}

	if (line_pos) {
		line_buff[line_pos++] = '\n';
		line_buff[line_pos++] = 0;

		drm_puts(p, line_buff);
	}

	kfree(line_buff);

#undef MIN_SPACE
#undef DMESG_MAX_LINE_LEN
}