1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2022 ROHM Semiconductors
*
* ROHM/KIONIX accelerometer driver
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/string_choices.h>
#include <linux/types.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "kionix-kx022a.h"
/*
* The KX022A has FIFO which can store 43 samples of HiRes data from 2
* channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to
* 258 bytes of sample data. The quirk to know is that the amount of bytes in
* the FIFO is advertised via 8 bit register (max value 255). The thing to note
* is that full 258 bytes of data is indicated using the max value 255.
*/
#define KX022A_FIFO_LENGTH 43
#define KX022A_FIFO_FULL_VALUE 255
#define KX022A_SOFT_RESET_WAIT_TIME_US (5 * USEC_PER_MSEC)
#define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US (500 * USEC_PER_MSEC)
/* 3 axis, 2 bytes of data for each of the axis */
#define KX022A_FIFO_SAMPLES_SIZE_BYTES 6
#define KX022A_FIFO_MAX_BYTES \
(KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES)
enum {
KX022A_STATE_SAMPLE,
KX022A_STATE_FIFO,
};
/* kx022a Regmap configs */
static const struct regmap_range kx022a_volatile_ranges[] = {
{
.range_min = KX022A_REG_XHP_L,
.range_max = KX022A_REG_COTR,
}, {
.range_min = KX022A_REG_TSCP,
.range_max = KX022A_REG_INT_REL,
}, {
/* The reset bit will be cleared by sensor */
.range_min = KX022A_REG_CNTL2,
.range_max = KX022A_REG_CNTL2,
}, {
.range_min = KX022A_REG_BUF_STATUS_1,
.range_max = KX022A_REG_BUF_READ,
},
};
static const struct regmap_access_table kx022a_volatile_regs = {
.yes_ranges = &kx022a_volatile_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges),
};
static const struct regmap_range kx022a_precious_ranges[] = {
{
.range_min = KX022A_REG_INT_REL,
.range_max = KX022A_REG_INT_REL,
},
};
static const struct regmap_access_table kx022a_precious_regs = {
.yes_ranges = &kx022a_precious_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges),
};
/*
* The HW does not set WHO_AM_I reg as read-only but we don't want to write it
* so we still include it in the read-only ranges.
*/
static const struct regmap_range kx022a_read_only_ranges[] = {
{
.range_min = KX022A_REG_XHP_L,
.range_max = KX022A_REG_INT_REL,
}, {
.range_min = KX022A_REG_BUF_STATUS_1,
.range_max = KX022A_REG_BUF_STATUS_2,
}, {
.range_min = KX022A_REG_BUF_READ,
.range_max = KX022A_REG_BUF_READ,
},
};
static const struct regmap_access_table kx022a_ro_regs = {
.no_ranges = &kx022a_read_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges),
};
static const struct regmap_range kx022a_write_only_ranges[] = {
{
.range_min = KX022A_REG_BTS_WUF_TH,
.range_max = KX022A_REG_BTS_WUF_TH,
}, {
.range_min = KX022A_REG_MAN_WAKE,
.range_max = KX022A_REG_MAN_WAKE,
}, {
.range_min = KX022A_REG_SELF_TEST,
.range_max = KX022A_REG_SELF_TEST,
}, {
.range_min = KX022A_REG_BUF_CLEAR,
.range_max = KX022A_REG_BUF_CLEAR,
},
};
static const struct regmap_access_table kx022a_wo_regs = {
.no_ranges = &kx022a_write_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges),
};
static const struct regmap_range kx022a_noinc_read_ranges[] = {
{
.range_min = KX022A_REG_BUF_READ,
.range_max = KX022A_REG_BUF_READ,
},
};
static const struct regmap_access_table kx022a_nir_regs = {
.yes_ranges = &kx022a_noinc_read_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges),
};
static const struct regmap_config kx022a_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &kx022a_volatile_regs,
.rd_table = &kx022a_wo_regs,
.wr_table = &kx022a_ro_regs,
.rd_noinc_table = &kx022a_nir_regs,
.precious_table = &kx022a_precious_regs,
.max_register = KX022A_MAX_REGISTER,
.cache_type = REGCACHE_RBTREE,
};
/* Regmap configs kx132 */
static const struct regmap_range kx132_volatile_ranges[] = {
{
.range_min = KX132_REG_XADP_L,
.range_max = KX132_REG_COTR,
}, {
.range_min = KX132_REG_TSCP,
.range_max = KX132_REG_INT_REL,
}, {
/* The reset bit will be cleared by sensor */
.range_min = KX132_REG_CNTL2,
.range_max = KX132_REG_CNTL2,
}, {
.range_min = KX132_REG_CNTL5,
.range_max = KX132_REG_CNTL5,
}, {
.range_min = KX132_REG_BUF_STATUS_1,
.range_max = KX132_REG_BUF_READ,
},
};
static const struct regmap_access_table kx132_volatile_regs = {
.yes_ranges = &kx132_volatile_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx132_volatile_ranges),
};
static const struct regmap_range kx132_precious_ranges[] = {
{
.range_min = KX132_REG_INT_REL,
.range_max = KX132_REG_INT_REL,
},
};
static const struct regmap_access_table kx132_precious_regs = {
.yes_ranges = &kx132_precious_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx132_precious_ranges),
};
static const struct regmap_range kx132_read_only_ranges[] = {
{
.range_min = KX132_REG_XADP_L,
.range_max = KX132_REG_INT_REL,
}, {
.range_min = KX132_REG_BUF_STATUS_1,
.range_max = KX132_REG_BUF_STATUS_2,
}, {
.range_min = KX132_REG_BUF_READ,
.range_max = KX132_REG_BUF_READ,
}, {
/* Kionix reserved registers: should not be written */
.range_min = 0x28,
.range_max = 0x28,
}, {
.range_min = 0x35,
.range_max = 0x36,
}, {
.range_min = 0x3c,
.range_max = 0x48,
}, {
.range_min = 0x4e,
.range_max = 0x5c,
}, {
.range_min = 0x77,
.range_max = 0x7f,
},
};
static const struct regmap_access_table kx132_ro_regs = {
.no_ranges = &kx132_read_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(kx132_read_only_ranges),
};
static const struct regmap_range kx132_write_only_ranges[] = {
{
.range_min = KX132_REG_SELF_TEST,
.range_max = KX132_REG_SELF_TEST,
}, {
.range_min = KX132_REG_BUF_CLEAR,
.range_max = KX132_REG_BUF_CLEAR,
},
};
static const struct regmap_access_table kx132_wo_regs = {
.no_ranges = &kx132_write_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(kx132_write_only_ranges),
};
static const struct regmap_range kx132_noinc_read_ranges[] = {
{
.range_min = KX132_REG_BUF_READ,
.range_max = KX132_REG_BUF_READ,
},
};
static const struct regmap_access_table kx132_nir_regs = {
.yes_ranges = &kx132_noinc_read_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx132_noinc_read_ranges),
};
static const struct regmap_config kx132_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &kx132_volatile_regs,
.rd_table = &kx132_wo_regs,
.wr_table = &kx132_ro_regs,
.rd_noinc_table = &kx132_nir_regs,
.precious_table = &kx132_precious_regs,
.max_register = KX132_MAX_REGISTER,
.cache_type = REGCACHE_RBTREE,
};
struct kx022a_data {
struct regmap *regmap;
const struct kx022a_chip_info *chip_info;
struct iio_trigger *trig;
struct device *dev;
struct iio_mount_matrix orientation;
int64_t timestamp, old_timestamp;
int irq;
int inc_reg;
int ien_reg;
unsigned int state;
unsigned int odr_ns;
bool trigger_enabled;
/*
* Prevent toggling the sensor stby/active state (PC1 bit) in the
* middle of a configuration, or when the fifo is enabled. Also,
* protect the data stored/retrieved from this structure from
* concurrent accesses.
*/
struct mutex mutex;
u8 watermark;
__le16 *fifo_buffer;
/* 3 x 16bit accel data + timestamp */
__le16 buffer[8] __aligned(IIO_DMA_MINALIGN);
struct {
__le16 channels[3];
aligned_s64 ts;
} scan;
};
static const struct iio_mount_matrix *
kx022a_get_mount_matrix(const struct iio_dev *idev,
const struct iio_chan_spec *chan)
{
struct kx022a_data *data = iio_priv(idev);
return &data->orientation;
}
enum {
AXIS_X,
AXIS_Y,
AXIS_Z,
AXIS_MAX
};
static const unsigned long kx022a_scan_masks[] = {
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0
};
static const struct iio_chan_spec_ext_info kx022a_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix),
{ }
};
#define KX022A_ACCEL_CHAN(axis, reg, index) \
{ \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.ext_info = kx022a_ext_info, \
.address = reg, \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
static const struct iio_chan_spec kx022a_channels[] = {
KX022A_ACCEL_CHAN(X, KX022A_REG_XOUT_L, 0),
KX022A_ACCEL_CHAN(Y, KX022A_REG_YOUT_L, 1),
KX022A_ACCEL_CHAN(Z, KX022A_REG_ZOUT_L, 2),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const struct iio_chan_spec kx132_channels[] = {
KX022A_ACCEL_CHAN(X, KX132_REG_XOUT_L, 0),
KX022A_ACCEL_CHAN(Y, KX132_REG_YOUT_L, 1),
KX022A_ACCEL_CHAN(Z, KX132_REG_ZOUT_L, 2),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
/*
* The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the
* Linux CPUs can handle without dropping samples. Also, the low power mode is
* not available for higher sample rates. Thus, the driver only supports 200 Hz
* and slower ODRs. The slowest is 0.78 Hz.
*/
static const int kx022a_accel_samp_freq_table[][2] = {
{ 0, 780000 },
{ 1, 563000 },
{ 3, 125000 },
{ 6, 250000 },
{ 12, 500000 },
{ 25, 0 },
{ 50, 0 },
{ 100, 0 },
{ 200, 0 },
};
static const unsigned int kx022a_odrs[] = {
1282051282,
639795266,
320 * MEGA,
160 * MEGA,
80 * MEGA,
40 * MEGA,
20 * MEGA,
10 * MEGA,
5 * MEGA,
};
/*
* range is typically +-2G/4G/8G/16G, distributed over the amount of bits.
* The scale table can be calculated using
* (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
* => KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed
* in low-power mode(?) )
* => +/-2G => 4 / 2^16 * 9,80665
* => +/-2G - 0.000598550415
* +/-4G - 0.00119710083
* +/-8G - 0.00239420166
* +/-16G - 0.00478840332
*/
static const int kx022a_scale_table[][2] = {
{ 0, 598550 },
{ 0, 1197101 },
{ 0, 2394202 },
{ 0, 4788403 },
};
static int kx022a_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (const int *)kx022a_accel_samp_freq_table;
*length = ARRAY_SIZE(kx022a_accel_samp_freq_table) *
ARRAY_SIZE(kx022a_accel_samp_freq_table[0]);
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SCALE:
*vals = (const int *)kx022a_scale_table;
*length = ARRAY_SIZE(kx022a_scale_table) *
ARRAY_SIZE(kx022a_scale_table[0]);
*type = IIO_VAL_INT_PLUS_NANO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
#define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC)
static void kx022a_reg2freq(unsigned int val, int *val1, int *val2)
{
*val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0];
*val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1];
}
static void kx022a_reg2scale(unsigned int val, unsigned int *val1,
unsigned int *val2)
{
val &= KX022A_MASK_GSEL;
val >>= KX022A_GSEL_SHIFT;
*val1 = kx022a_scale_table[val][0];
*val2 = kx022a_scale_table[val][1];
}
static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on)
{
int ret;
if (on)
ret = regmap_set_bits(data->regmap, data->chip_info->cntl,
KX022A_MASK_PC1);
else
ret = regmap_clear_bits(data->regmap, data->chip_info->cntl,
KX022A_MASK_PC1);
if (ret)
dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret);
return ret;
}
static int kx022a_turn_off_lock(struct kx022a_data *data)
{
int ret;
mutex_lock(&data->mutex);
ret = kx022a_turn_on_off_unlocked(data, false);
if (ret)
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_turn_on_unlock(struct kx022a_data *data)
{
int ret;
ret = kx022a_turn_on_off_unlocked(data, true);
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_write_raw_get_fmt(struct iio_dev *idev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int kx022a_write_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct kx022a_data *data = iio_priv(idev);
int ret, n;
/*
* We should not allow changing scale or frequency when FIFO is running
* as it will mess the timestamp/scale for samples existing in the
* buffer. If this turns out to be an issue we can later change logic
* to internally flush the fifo before reconfiguring so the samples in
* fifo keep matching the freq/scale settings. (Such setup could cause
* issues if users trust the watermark to be reached within known
* time-limit).
*/
ret = iio_device_claim_direct_mode(idev);
if (ret)
return ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
n = ARRAY_SIZE(kx022a_accel_samp_freq_table);
while (n--)
if (val == kx022a_accel_samp_freq_table[n][0] &&
val2 == kx022a_accel_samp_freq_table[n][1])
break;
if (n < 0) {
ret = -EINVAL;
goto unlock_out;
}
ret = kx022a_turn_off_lock(data);
if (ret)
break;
ret = regmap_update_bits(data->regmap,
data->chip_info->odcntl,
KX022A_MASK_ODR, n);
data->odr_ns = kx022a_odrs[n];
kx022a_turn_on_unlock(data);
break;
case IIO_CHAN_INFO_SCALE:
n = ARRAY_SIZE(kx022a_scale_table);
while (n-- > 0)
if (val == kx022a_scale_table[n][0] &&
val2 == kx022a_scale_table[n][1])
break;
if (n < 0) {
ret = -EINVAL;
goto unlock_out;
}
ret = kx022a_turn_off_lock(data);
if (ret)
break;
ret = regmap_update_bits(data->regmap, data->chip_info->cntl,
KX022A_MASK_GSEL,
n << KX022A_GSEL_SHIFT);
kx022a_turn_on_unlock(data);
break;
default:
ret = -EINVAL;
break;
}
unlock_out:
iio_device_release_direct_mode(idev);
return ret;
}
static int kx022a_fifo_set_wmi(struct kx022a_data *data)
{
u8 threshold;
threshold = data->watermark;
return regmap_update_bits(data->regmap, data->chip_info->buf_cntl1,
KX022A_MASK_WM_TH, threshold);
}
static int kx022a_get_axis(struct kx022a_data *data,
struct iio_chan_spec const *chan,
int *val)
{
int ret;
ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0],
sizeof(__le16));
if (ret)
return ret;
*val = (s16)le16_to_cpu(data->buffer[0]);
return IIO_VAL_INT;
}
static int kx022a_read_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct kx022a_data *data = iio_priv(idev);
unsigned int regval;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(idev);
if (ret)
return ret;
mutex_lock(&data->mutex);
ret = kx022a_get_axis(data, chan, val);
mutex_unlock(&data->mutex);
iio_device_release_direct_mode(idev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = regmap_read(data->regmap, data->chip_info->odcntl, ®val);
if (ret)
return ret;
if ((regval & KX022A_MASK_ODR) >
ARRAY_SIZE(kx022a_accel_samp_freq_table)) {
dev_err(data->dev, "Invalid ODR\n");
return -EINVAL;
}
kx022a_reg2freq(regval, val, val2);
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SCALE:
ret = regmap_read(data->regmap, data->chip_info->cntl, ®val);
if (ret < 0)
return ret;
kx022a_reg2scale(regval, val, val2);
return IIO_VAL_INT_PLUS_NANO;
}
return -EINVAL;
};
static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val)
{
struct kx022a_data *data = iio_priv(idev);
val = min(data->chip_info->fifo_length, val);
mutex_lock(&data->mutex);
data->watermark = val;
mutex_unlock(&data->mutex);
return 0;
}
static ssize_t hwfifo_enabled_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *idev = dev_to_iio_dev(dev);
struct kx022a_data *data = iio_priv(idev);
bool state;
mutex_lock(&data->mutex);
state = data->state;
mutex_unlock(&data->mutex);
return sysfs_emit(buf, "%d\n", state);
}
static ssize_t hwfifo_watermark_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *idev = dev_to_iio_dev(dev);
struct kx022a_data *data = iio_priv(idev);
int wm;
mutex_lock(&data->mutex);
wm = data->watermark;
mutex_unlock(&data->mutex);
return sysfs_emit(buf, "%d\n", wm);
}
static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
static const struct iio_dev_attr *kx022a_fifo_attributes[] = {
&iio_dev_attr_hwfifo_watermark,
&iio_dev_attr_hwfifo_enabled,
NULL
};
static int kx022a_drop_fifo_contents(struct kx022a_data *data)
{
/*
* We must clear the old time-stamp to avoid computing the timestamps
* based on samples acquired when buffer was last enabled.
*
* We don't need to protect the timestamp as long as we are only
* called from fifo-disable where we can guarantee the sensor is not
* triggering interrupts and where the mutex is locked to prevent the
* user-space access.
*/
data->timestamp = 0;
return regmap_write(data->regmap, data->chip_info->buf_clear, 0x0);
}
static int kx022a_get_fifo_bytes_available(struct kx022a_data *data)
{
int ret, fifo_bytes;
ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes);
if (ret) {
dev_err(data->dev, "Error reading buffer status\n");
return ret;
}
if (fifo_bytes == KX022A_FIFO_FULL_VALUE)
return KX022A_FIFO_MAX_BYTES;
return fifo_bytes;
}
static int kx132_get_fifo_bytes_available(struct kx022a_data *data)
{
__le16 buf_status;
int ret, fifo_bytes;
ret = regmap_bulk_read(data->regmap, data->chip_info->buf_status1,
&buf_status, sizeof(buf_status));
if (ret) {
dev_err(data->dev, "Error reading buffer status\n");
return ret;
}
fifo_bytes = le16_to_cpu(buf_status);
fifo_bytes &= data->chip_info->buf_smp_lvl_mask;
fifo_bytes = min((unsigned int)fifo_bytes, data->chip_info->fifo_length *
KX022A_FIFO_SAMPLES_SIZE_BYTES);
return fifo_bytes;
}
static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples,
bool irq)
{
struct kx022a_data *data = iio_priv(idev);
uint64_t sample_period;
int count, fifo_bytes;
bool renable = false;
int64_t tstamp;
int ret, i;
fifo_bytes = data->chip_info->get_fifo_bytes_available(data);
if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES)
dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n");
count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES;
if (!count)
return 0;
/*
* If we are being called from IRQ handler we know the stored timestamp
* is fairly accurate for the last stored sample. Otherwise, if we are
* called as a result of a read operation from userspace and hence
* before the watermark interrupt was triggered, take a timestamp
* now. We can fall anywhere in between two samples so the error in this
* case is at most one sample period.
*/
if (!irq) {
/*
* We need to have the IRQ disabled or we risk of messing-up
* the timestamps. If we are ran from IRQ, then the
* IRQF_ONESHOT has us covered - but if we are ran by the
* user-space read we need to disable the IRQ to be on a safe
* side. We do this usng synchronous disable so that if the
* IRQ thread is being ran on other CPU we wait for it to be
* finished.
*/
disable_irq(data->irq);
renable = true;
data->old_timestamp = data->timestamp;
data->timestamp = iio_get_time_ns(idev);
}
/*
* Approximate timestamps for each of the sample based on the sampling
* frequency, timestamp for last sample and number of samples.
*
* We'd better not use the current bandwidth settings to compute the
* sample period. The real sample rate varies with the device and
* small variation adds when we store a large number of samples.
*
* To avoid this issue we compute the actual sample period ourselves
* based on the timestamp delta between the last two flush operations.
*/
if (data->old_timestamp) {
sample_period = data->timestamp - data->old_timestamp;
do_div(sample_period, count);
} else {
sample_period = data->odr_ns;
}
tstamp = data->timestamp - (count - 1) * sample_period;
if (samples && count > samples) {
/*
* Here we leave some old samples to the buffer. We need to
* adjust the timestamp to match the first sample in the buffer
* or we will miscalculate the sample_period at next round.
*/
data->timestamp -= (count - samples) * sample_period;
count = samples;
}
fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES;
ret = regmap_noinc_read(data->regmap, data->chip_info->buf_read,
data->fifo_buffer, fifo_bytes);
if (ret)
goto renable_out;
for (i = 0; i < count; i++) {
__le16 *sam = &data->fifo_buffer[i * 3];
__le16 *chs;
int bit;
chs = &data->scan.channels[0];
for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX)
chs[bit] = sam[bit];
iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp);
tstamp += sample_period;
}
ret = count;
renable_out:
if (renable)
enable_irq(data->irq);
return ret;
}
static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples)
{
struct kx022a_data *data = iio_priv(idev);
int ret;
mutex_lock(&data->mutex);
ret = __kx022a_fifo_flush(idev, samples, false);
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_info kx022a_info = {
.read_raw = &kx022a_read_raw,
.write_raw = &kx022a_write_raw,
.write_raw_get_fmt = &kx022a_write_raw_get_fmt,
.read_avail = &kx022a_read_avail,
.validate_trigger = iio_validate_own_trigger,
.hwfifo_set_watermark = kx022a_set_watermark,
.hwfifo_flush_to_buffer = kx022a_fifo_flush,
};
static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en)
{
if (en)
return regmap_set_bits(data->regmap, data->chip_info->cntl,
KX022A_MASK_DRDY);
return regmap_clear_bits(data->regmap, data->chip_info->cntl,
KX022A_MASK_DRDY);
}
static int kx022a_prepare_irq_pin(struct kx022a_data *data)
{
/* Enable IRQ1 pin. Set polarity to active low */
int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL |
KX022A_MASK_ITYP;
int val = KX022A_MASK_IEN | KX022A_IPOL_LOW |
KX022A_ITYP_LEVEL;
int ret;
ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val);
if (ret)
return ret;
/* We enable WMI to IRQ pin only at buffer_enable */
mask = KX022A_MASK_INS2_DRDY;
return regmap_set_bits(data->regmap, data->ien_reg, mask);
}
static int kx022a_fifo_disable(struct kx022a_data *data)
{
int ret = 0;
ret = kx022a_turn_off_lock(data);
if (ret)
return ret;
ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI);
if (ret)
goto unlock_out;
ret = regmap_clear_bits(data->regmap, data->chip_info->buf_cntl2,
KX022A_MASK_BUF_EN);
if (ret)
goto unlock_out;
data->state &= ~KX022A_STATE_FIFO;
kx022a_drop_fifo_contents(data);
kfree(data->fifo_buffer);
return kx022a_turn_on_unlock(data);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_buffer_predisable(struct iio_dev *idev)
{
struct kx022a_data *data = iio_priv(idev);
if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
return 0;
return kx022a_fifo_disable(data);
}
static int kx022a_fifo_enable(struct kx022a_data *data)
{
int ret;
data->fifo_buffer = kmalloc_array(data->chip_info->fifo_length,
KX022A_FIFO_SAMPLES_SIZE_BYTES,
GFP_KERNEL);
if (!data->fifo_buffer)
return -ENOMEM;
ret = kx022a_turn_off_lock(data);
if (ret)
return ret;
/* Update watermark to HW */
ret = kx022a_fifo_set_wmi(data);
if (ret)
goto unlock_out;
/* Enable buffer */
ret = regmap_set_bits(data->regmap, data->chip_info->buf_cntl2,
KX022A_MASK_BUF_EN);
if (ret)
goto unlock_out;
data->state |= KX022A_STATE_FIFO;
ret = regmap_set_bits(data->regmap, data->ien_reg,
KX022A_MASK_WMI);
if (ret)
goto unlock_out;
return kx022a_turn_on_unlock(data);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_buffer_postenable(struct iio_dev *idev)
{
struct kx022a_data *data = iio_priv(idev);
/*
* If we use data-ready trigger, then the IRQ masks should be handled by
* trigger enable and the hardware buffer is not used but we just update
* results to the IIO fifo when data-ready triggers.
*/
if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
return 0;
return kx022a_fifo_enable(data);
}
static const struct iio_buffer_setup_ops kx022a_buffer_ops = {
.postenable = kx022a_buffer_postenable,
.predisable = kx022a_buffer_predisable,
};
static irqreturn_t kx022a_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *idev = pf->indio_dev;
struct kx022a_data *data = iio_priv(idev);
int ret;
ret = regmap_bulk_read(data->regmap, data->chip_info->xout_l, data->buffer,
KX022A_FIFO_SAMPLES_SIZE_BYTES);
if (ret < 0)
goto err_read;
iio_push_to_buffers_with_timestamp(idev, data->buffer, data->timestamp);
err_read:
iio_trigger_notify_done(idev->trig);
return IRQ_HANDLED;
}
/* Get timestamps and wake the thread if we need to read data */
static irqreturn_t kx022a_irq_handler(int irq, void *private)
{
struct iio_dev *idev = private;
struct kx022a_data *data = iio_priv(idev);
data->old_timestamp = data->timestamp;
data->timestamp = iio_get_time_ns(idev);
if (data->state & KX022A_STATE_FIFO || data->trigger_enabled)
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
/*
* WMI and data-ready IRQs are acked when results are read. If we add
* TILT/WAKE or other IRQs - then we may need to implement the acking
* (which is racy).
*/
static irqreturn_t kx022a_irq_thread_handler(int irq, void *private)
{
struct iio_dev *idev = private;
struct kx022a_data *data = iio_priv(idev);
irqreturn_t ret = IRQ_NONE;
mutex_lock(&data->mutex);
if (data->trigger_enabled) {
iio_trigger_poll_nested(data->trig);
ret = IRQ_HANDLED;
}
if (data->state & KX022A_STATE_FIFO) {
int ok;
ok = __kx022a_fifo_flush(idev, data->chip_info->fifo_length, true);
if (ok > 0)
ret = IRQ_HANDLED;
}
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct kx022a_data *data = iio_trigger_get_drvdata(trig);
int ret = 0;
mutex_lock(&data->mutex);
if (data->trigger_enabled == state)
goto unlock_out;
if (data->state & KX022A_STATE_FIFO) {
dev_warn(data->dev, "Can't set trigger when FIFO enabled\n");
ret = -EBUSY;
goto unlock_out;
}
ret = kx022a_turn_on_off_unlocked(data, false);
if (ret)
goto unlock_out;
data->trigger_enabled = state;
ret = kx022a_set_drdy_irq(data, state);
if (ret)
goto unlock_out;
ret = kx022a_turn_on_off_unlocked(data, true);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_trigger_ops kx022a_trigger_ops = {
.set_trigger_state = kx022a_trigger_set_state,
};
static int kx022a_chip_init(struct kx022a_data *data)
{
int ret, val;
/* Reset the senor */
ret = regmap_write(data->regmap, data->chip_info->cntl2, KX022A_MASK_SRST);
if (ret)
return ret;
/*
* I've seen I2C read failures if we poll too fast after the sensor
* reset. Slight delay gives I2C block the time to recover.
*/
msleep(1);
ret = regmap_read_poll_timeout(data->regmap, data->chip_info->cntl2, val,
!(val & KX022A_MASK_SRST),
KX022A_SOFT_RESET_WAIT_TIME_US,
KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US);
if (ret) {
dev_err(data->dev, "Sensor reset %s\n",
val & KX022A_MASK_SRST ? "timeout" : "fail#");
return ret;
}
ret = regmap_reinit_cache(data->regmap, data->chip_info->regmap_config);
if (ret) {
dev_err(data->dev, "Failed to reinit reg cache\n");
return ret;
}
/* set data res 16bit */
ret = regmap_set_bits(data->regmap, data->chip_info->buf_cntl2,
KX022A_MASK_BRES16);
if (ret) {
dev_err(data->dev, "Failed to set data resolution\n");
return ret;
}
return kx022a_prepare_irq_pin(data);
}
const struct kx022a_chip_info kx022a_chip_info = {
.name = "kx022-accel",
.regmap_config = &kx022a_regmap_config,
.channels = kx022a_channels,
.num_channels = ARRAY_SIZE(kx022a_channels),
.fifo_length = KX022A_FIFO_LENGTH,
.who = KX022A_REG_WHO,
.id = KX022A_ID,
.cntl = KX022A_REG_CNTL,
.cntl2 = KX022A_REG_CNTL2,
.odcntl = KX022A_REG_ODCNTL,
.buf_cntl1 = KX022A_REG_BUF_CNTL1,
.buf_cntl2 = KX022A_REG_BUF_CNTL2,
.buf_clear = KX022A_REG_BUF_CLEAR,
.buf_status1 = KX022A_REG_BUF_STATUS_1,
.buf_read = KX022A_REG_BUF_READ,
.inc1 = KX022A_REG_INC1,
.inc4 = KX022A_REG_INC4,
.inc5 = KX022A_REG_INC5,
.inc6 = KX022A_REG_INC6,
.xout_l = KX022A_REG_XOUT_L,
.get_fifo_bytes_available = kx022a_get_fifo_bytes_available,
};
EXPORT_SYMBOL_NS_GPL(kx022a_chip_info, IIO_KX022A);
const struct kx022a_chip_info kx132_chip_info = {
.name = "kx132-1211",
.regmap_config = &kx132_regmap_config,
.channels = kx132_channels,
.num_channels = ARRAY_SIZE(kx132_channels),
.fifo_length = KX132_FIFO_LENGTH,
.who = KX132_REG_WHO,
.id = KX132_ID,
.cntl = KX132_REG_CNTL,
.cntl2 = KX132_REG_CNTL2,
.odcntl = KX132_REG_ODCNTL,
.buf_cntl1 = KX132_REG_BUF_CNTL1,
.buf_cntl2 = KX132_REG_BUF_CNTL2,
.buf_clear = KX132_REG_BUF_CLEAR,
.buf_status1 = KX132_REG_BUF_STATUS_1,
.buf_smp_lvl_mask = KX132_MASK_BUF_SMP_LVL,
.buf_read = KX132_REG_BUF_READ,
.inc1 = KX132_REG_INC1,
.inc4 = KX132_REG_INC4,
.inc5 = KX132_REG_INC5,
.inc6 = KX132_REG_INC6,
.xout_l = KX132_REG_XOUT_L,
.get_fifo_bytes_available = kx132_get_fifo_bytes_available,
};
EXPORT_SYMBOL_NS_GPL(kx132_chip_info, IIO_KX022A);
/*
* Despite the naming, KX132ACR-LBZ is not similar to KX132-1211 but it is
* exact subset of KX022A. KX132ACR-LBZ is meant to be used for industrial
* applications and the tap/double tap, free fall and tilt engines were
* removed. Rest of the registers and functionalities (excluding the ID
* register) are exact match to what is found in KX022.
*/
const struct kx022a_chip_info kx132acr_chip_info = {
.name = "kx132acr-lbz",
.regmap_config = &kx022a_regmap_config,
.channels = kx022a_channels,
.num_channels = ARRAY_SIZE(kx022a_channels),
.fifo_length = KX022A_FIFO_LENGTH,
.who = KX022A_REG_WHO,
.id = KX132ACR_LBZ_ID,
.cntl = KX022A_REG_CNTL,
.cntl2 = KX022A_REG_CNTL2,
.odcntl = KX022A_REG_ODCNTL,
.buf_cntl1 = KX022A_REG_BUF_CNTL1,
.buf_cntl2 = KX022A_REG_BUF_CNTL2,
.buf_clear = KX022A_REG_BUF_CLEAR,
.buf_status1 = KX022A_REG_BUF_STATUS_1,
.buf_read = KX022A_REG_BUF_READ,
.inc1 = KX022A_REG_INC1,
.inc4 = KX022A_REG_INC4,
.inc5 = KX022A_REG_INC5,
.inc6 = KX022A_REG_INC6,
.xout_l = KX022A_REG_XOUT_L,
.get_fifo_bytes_available = kx022a_get_fifo_bytes_available,
};
EXPORT_SYMBOL_NS_GPL(kx132acr_chip_info, IIO_KX022A);
int kx022a_probe_internal(struct device *dev, const struct kx022a_chip_info *chip_info)
{
static const char * const regulator_names[] = {"io-vdd", "vdd"};
struct iio_trigger *indio_trig;
struct fwnode_handle *fwnode;
struct kx022a_data *data;
struct regmap *regmap;
unsigned int chip_id;
struct iio_dev *idev;
int ret, irq;
char *name;
regmap = dev_get_regmap(dev, NULL);
if (!regmap) {
dev_err(dev, "no regmap\n");
return -EINVAL;
}
fwnode = dev_fwnode(dev);
if (!fwnode)
return -ENODEV;
idev = devm_iio_device_alloc(dev, sizeof(*data));
if (!idev)
return -ENOMEM;
data = iio_priv(idev);
data->chip_info = chip_info;
/*
* VDD is the analog and digital domain voltage supply and
* IO_VDD is the digital I/O voltage supply.
*/
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names),
regulator_names);
if (ret && ret != -ENODEV)
return dev_err_probe(dev, ret, "failed to enable regulator\n");
ret = regmap_read(regmap, chip_info->who, &chip_id);
if (ret)
return dev_err_probe(dev, ret, "Failed to access sensor\n");
if (chip_id != chip_info->id)
dev_warn(dev, "unknown device 0x%x\n", chip_id);
irq = fwnode_irq_get_byname(fwnode, "INT1");
if (irq > 0) {
data->inc_reg = chip_info->inc1;
data->ien_reg = chip_info->inc4;
} else {
irq = fwnode_irq_get_byname(fwnode, "INT2");
if (irq < 0)
return dev_err_probe(dev, irq, "No suitable IRQ\n");
data->inc_reg = chip_info->inc5;
data->ien_reg = chip_info->inc6;
}
data->regmap = regmap;
data->dev = dev;
data->irq = irq;
data->odr_ns = KX022A_DEFAULT_PERIOD_NS;
mutex_init(&data->mutex);
idev->channels = chip_info->channels;
idev->num_channels = chip_info->num_channels;
idev->name = chip_info->name;
idev->info = &kx022a_info;
idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
idev->available_scan_masks = kx022a_scan_masks;
/* Read the mounting matrix, if present */
ret = iio_read_mount_matrix(dev, &data->orientation);
if (ret)
return ret;
/* The sensor must be turned off for configuration */
ret = kx022a_turn_off_lock(data);
if (ret)
return ret;
ret = kx022a_chip_init(data);
if (ret) {
mutex_unlock(&data->mutex);
return ret;
}
ret = kx022a_turn_on_unlock(data);
if (ret)
return ret;
ret = devm_iio_triggered_buffer_setup_ext(dev, idev,
&iio_pollfunc_store_time,
kx022a_trigger_handler,
IIO_BUFFER_DIRECTION_IN,
&kx022a_buffer_ops,
kx022a_fifo_attributes);
if (ret)
return dev_err_probe(data->dev, ret,
"iio_triggered_buffer_setup_ext FAIL\n");
indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name,
iio_device_id(idev));
if (!indio_trig)
return -ENOMEM;
data->trig = indio_trig;
indio_trig->ops = &kx022a_trigger_ops;
iio_trigger_set_drvdata(indio_trig, data);
/*
* No need to check for NULL. request_threaded_irq() defaults to
* dev_name() should the alloc fail.
*/
name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a",
dev_name(data->dev));
ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler,
&kx022a_irq_thread_handler,
IRQF_ONESHOT, name, idev);
if (ret)
return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
ret = devm_iio_trigger_register(dev, indio_trig);
if (ret)
return dev_err_probe(data->dev, ret,
"Trigger registration failed\n");
ret = devm_iio_device_register(data->dev, idev);
if (ret < 0)
return dev_err_probe(dev, ret,
"Unable to register iio device\n");
return ret;
}
EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, IIO_KX022A);
MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver");
MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
MODULE_LICENSE("GPL");
|