1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
|
// SPDX-License-Identifier: GPL-2.0
/*
* Bosch BME680 - Temperature, Pressure, Humidity & Gas Sensor
*
* Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
* Copyright (C) 2018 Himanshu Jha <himanshujha199640@gmail.com>
*
* Datasheet:
* https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME680-DS001-00.pdf
*/
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <asm/unaligned.h>
#include "bme680.h"
/* 1st set of calibration data */
enum {
/* Temperature calib indexes */
T2_LSB = 0,
T3 = 2,
/* Pressure calib indexes */
P1_LSB = 4,
P2_LSB = 6,
P3 = 8,
P4_LSB = 10,
P5_LSB = 12,
P7 = 14,
P6 = 15,
P8_LSB = 18,
P9_LSB = 20,
P10 = 22,
};
/* 2nd set of calibration data */
enum {
/* Humidity calib indexes */
H2_MSB = 0,
H1_LSB = 1,
H3 = 3,
H4 = 4,
H5 = 5,
H6 = 6,
H7 = 7,
/* Stray T1 calib index */
T1_LSB = 8,
/* Gas heater calib indexes */
GH2_LSB = 10,
GH1 = 12,
GH3 = 13,
};
/* 3rd set of calibration data */
enum {
RES_HEAT_VAL = 0,
RES_HEAT_RANGE = 2,
RANGE_SW_ERR = 4,
};
struct bme680_calib {
u16 par_t1;
s16 par_t2;
s8 par_t3;
u16 par_p1;
s16 par_p2;
s8 par_p3;
s16 par_p4;
s16 par_p5;
s8 par_p6;
s8 par_p7;
s16 par_p8;
s16 par_p9;
u8 par_p10;
u16 par_h1;
u16 par_h2;
s8 par_h3;
s8 par_h4;
s8 par_h5;
u8 par_h6;
s8 par_h7;
s8 par_gh1;
s16 par_gh2;
s8 par_gh3;
u8 res_heat_range;
s8 res_heat_val;
s8 range_sw_err;
};
struct bme680_data {
struct regmap *regmap;
struct bme680_calib bme680;
struct mutex lock; /* Protect multiple serial R/W ops to device. */
u8 oversampling_temp;
u8 oversampling_press;
u8 oversampling_humid;
u16 heater_dur;
u16 heater_temp;
/*
* Carryover value from temperature conversion, used in pressure
* and humidity compensation calculations.
*/
s32 t_fine;
union {
u8 buf[3];
unsigned int check;
__be16 be16;
u8 bme680_cal_buf_1[BME680_CALIB_RANGE_1_LEN];
u8 bme680_cal_buf_2[BME680_CALIB_RANGE_2_LEN];
u8 bme680_cal_buf_3[BME680_CALIB_RANGE_3_LEN];
};
};
static const struct regmap_range bme680_volatile_ranges[] = {
regmap_reg_range(BME680_REG_MEAS_STAT_0, BME680_REG_GAS_R_LSB),
regmap_reg_range(BME680_REG_STATUS, BME680_REG_STATUS),
regmap_reg_range(BME680_T2_LSB_REG, BME680_GH3_REG),
};
static const struct regmap_access_table bme680_volatile_table = {
.yes_ranges = bme680_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(bme680_volatile_ranges),
};
const struct regmap_config bme680_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0xef,
.volatile_table = &bme680_volatile_table,
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_NS(bme680_regmap_config, IIO_BME680);
static const struct iio_chan_spec bme680_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
},
{
.type = IIO_PRESSURE,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
},
{
.type = IIO_HUMIDITYRELATIVE,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
},
{
.type = IIO_RESISTANCE,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
},
};
static int bme680_read_calib(struct bme680_data *data,
struct bme680_calib *calib)
{
struct device *dev = regmap_get_device(data->regmap);
unsigned int tmp_msb, tmp_lsb;
int ret;
ret = regmap_bulk_read(data->regmap, BME680_T2_LSB_REG,
data->bme680_cal_buf_1,
sizeof(data->bme680_cal_buf_1));
if (ret < 0) {
dev_err(dev, "failed to read 1st set of calib data;\n");
return ret;
}
calib->par_t2 = get_unaligned_le16(&data->bme680_cal_buf_1[T2_LSB]);
calib->par_t3 = data->bme680_cal_buf_1[T3];
calib->par_p1 = get_unaligned_le16(&data->bme680_cal_buf_1[P1_LSB]);
calib->par_p2 = get_unaligned_le16(&data->bme680_cal_buf_1[P2_LSB]);
calib->par_p3 = data->bme680_cal_buf_1[P3];
calib->par_p4 = get_unaligned_le16(&data->bme680_cal_buf_1[P4_LSB]);
calib->par_p5 = get_unaligned_le16(&data->bme680_cal_buf_1[P5_LSB]);
calib->par_p7 = data->bme680_cal_buf_1[P7];
calib->par_p6 = data->bme680_cal_buf_1[P6];
calib->par_p8 = get_unaligned_le16(&data->bme680_cal_buf_1[P8_LSB]);
calib->par_p9 = get_unaligned_le16(&data->bme680_cal_buf_1[P9_LSB]);
calib->par_p10 = data->bme680_cal_buf_1[P10];
ret = regmap_bulk_read(data->regmap, BME680_H2_MSB_REG,
data->bme680_cal_buf_2,
sizeof(data->bme680_cal_buf_2));
if (ret < 0) {
dev_err(dev, "failed to read 2nd set of calib data;\n");
return ret;
}
tmp_lsb = data->bme680_cal_buf_2[H1_LSB];
tmp_msb = data->bme680_cal_buf_2[H1_LSB + 1];
calib->par_h1 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) |
(tmp_lsb & BME680_BIT_H1_DATA_MASK);
tmp_msb = data->bme680_cal_buf_2[H2_MSB];
tmp_lsb = data->bme680_cal_buf_2[H2_MSB + 1];
calib->par_h2 = (tmp_msb << BME680_HUM_REG_SHIFT_VAL) |
(tmp_lsb >> BME680_HUM_REG_SHIFT_VAL);
calib->par_h3 = data->bme680_cal_buf_2[H3];
calib->par_h4 = data->bme680_cal_buf_2[H4];
calib->par_h5 = data->bme680_cal_buf_2[H5];
calib->par_h6 = data->bme680_cal_buf_2[H6];
calib->par_h7 = data->bme680_cal_buf_2[H7];
calib->par_t1 = get_unaligned_le16(&data->bme680_cal_buf_2[T1_LSB]);
calib->par_gh2 = get_unaligned_le16(&data->bme680_cal_buf_2[GH2_LSB]);
calib->par_gh1 = data->bme680_cal_buf_2[GH1];
calib->par_gh3 = data->bme680_cal_buf_2[GH3];
ret = regmap_bulk_read(data->regmap, BME680_REG_RES_HEAT_VAL,
data->bme680_cal_buf_3,
sizeof(data->bme680_cal_buf_3));
if (ret < 0) {
dev_err(dev, "failed to read 3rd set of calib data;\n");
return ret;
}
calib->res_heat_val = data->bme680_cal_buf_3[RES_HEAT_VAL];
calib->res_heat_range = FIELD_GET(BME680_RHRANGE_MASK,
data->bme680_cal_buf_3[RES_HEAT_RANGE]);
calib->range_sw_err = FIELD_GET(BME680_RSERROR_MASK,
data->bme680_cal_buf_3[RANGE_SW_ERR]);
return 0;
}
/*
* Taken from Bosch BME680 API:
* https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L876
*
* Returns temperature measurement in DegC, resolutions is 0.01 DegC. Therefore,
* output value of "3233" represents 32.33 DegC.
*/
static s16 bme680_compensate_temp(struct bme680_data *data,
u32 adc_temp)
{
struct bme680_calib *calib = &data->bme680;
s64 var1, var2, var3;
s16 calc_temp;
/* If the calibration is invalid, attempt to reload it */
if (!calib->par_t2)
bme680_read_calib(data, calib);
var1 = ((s32)adc_temp >> 3) - ((s32)calib->par_t1 << 1);
var2 = (var1 * calib->par_t2) >> 11;
var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
var3 = (var3 * ((s32)calib->par_t3 << 4)) >> 14;
data->t_fine = var2 + var3;
calc_temp = (data->t_fine * 5 + 128) >> 8;
return calc_temp;
}
/*
* Taken from Bosch BME680 API:
* https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L896
*
* Returns pressure measurement in Pa. Output value of "97356" represents
* 97356 Pa = 973.56 hPa.
*/
static u32 bme680_compensate_press(struct bme680_data *data,
u32 adc_press)
{
struct bme680_calib *calib = &data->bme680;
s32 var1, var2, var3, press_comp;
var1 = (data->t_fine >> 1) - 64000;
var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) * calib->par_p6) >> 2;
var2 = var2 + (var1 * calib->par_p5 << 1);
var2 = (var2 >> 2) + ((s32)calib->par_p4 << 16);
var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
((s32)calib->par_p3 << 5)) >> 3) +
((calib->par_p2 * var1) >> 1);
var1 = var1 >> 18;
var1 = ((32768 + var1) * calib->par_p1) >> 15;
press_comp = 1048576 - adc_press;
press_comp = ((press_comp - (var2 >> 12)) * 3125);
if (press_comp >= BME680_MAX_OVERFLOW_VAL)
press_comp = ((press_comp / (u32)var1) << 1);
else
press_comp = ((press_comp << 1) / (u32)var1);
var1 = (calib->par_p9 * (((press_comp >> 3) *
(press_comp >> 3)) >> 13)) >> 12;
var2 = ((press_comp >> 2) * calib->par_p8) >> 13;
var3 = ((press_comp >> 8) * (press_comp >> 8) *
(press_comp >> 8) * calib->par_p10) >> 17;
press_comp += (var1 + var2 + var3 + ((s32)calib->par_p7 << 7)) >> 4;
return press_comp;
}
/*
* Taken from Bosch BME680 API:
* https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L937
*
* Returns humidity measurement in percent, resolution is 0.001 percent. Output
* value of "43215" represents 43.215 %rH.
*/
static u32 bme680_compensate_humid(struct bme680_data *data,
u16 adc_humid)
{
struct bme680_calib *calib = &data->bme680;
s32 var1, var2, var3, var4, var5, var6, temp_scaled, calc_hum;
temp_scaled = (data->t_fine * 5 + 128) >> 8;
var1 = (adc_humid - (((s32)calib->par_h1 * 16))) -
(((temp_scaled * calib->par_h3) / 100) >> 1);
var2 = (calib->par_h2 *
(((temp_scaled * calib->par_h4) / 100) +
(((temp_scaled * ((temp_scaled * calib->par_h5) / 100))
>> 6) / 100) + (1 << 14))) >> 10;
var3 = var1 * var2;
var4 = (s32)calib->par_h6 << 7;
var4 = (var4 + ((temp_scaled * calib->par_h7) / 100)) >> 4;
var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
var6 = (var4 * var5) >> 1;
calc_hum = (((var3 + var6) >> 10) * 1000) >> 12;
calc_hum = clamp(calc_hum, 0, 100000); /* clamp between 0-100 %rH */
return calc_hum;
}
/*
* Taken from Bosch BME680 API:
* https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L973
*
* Returns gas measurement in Ohm. Output value of "82986" represent 82986 ohms.
*/
static u32 bme680_compensate_gas(struct bme680_data *data, u16 gas_res_adc,
u8 gas_range)
{
struct bme680_calib *calib = &data->bme680;
s64 var1;
u64 var2;
s64 var3;
u32 calc_gas_res;
/* Look up table for the possible gas range values */
const u32 lookupTable[16] = {2147483647u, 2147483647u,
2147483647u, 2147483647u, 2147483647u,
2126008810u, 2147483647u, 2130303777u,
2147483647u, 2147483647u, 2143188679u,
2136746228u, 2147483647u, 2126008810u,
2147483647u, 2147483647u};
var1 = ((1340 + (5 * (s64) calib->range_sw_err)) *
((s64) lookupTable[gas_range])) >> 16;
var2 = ((gas_res_adc << 15) - 16777216) + var1;
var3 = ((125000 << (15 - gas_range)) * var1) >> 9;
var3 += (var2 >> 1);
calc_gas_res = div64_s64(var3, (s64) var2);
return calc_gas_res;
}
/*
* Taken from Bosch BME680 API:
* https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1002
*/
static u8 bme680_calc_heater_res(struct bme680_data *data, u16 temp)
{
struct bme680_calib *calib = &data->bme680;
s32 var1, var2, var3, var4, var5, heatr_res_x100;
u8 heatr_res;
if (temp > 400) /* Cap temperature */
temp = 400;
var1 = (((s32) BME680_AMB_TEMP * calib->par_gh3) / 1000) * 256;
var2 = (calib->par_gh1 + 784) * (((((calib->par_gh2 + 154009) *
temp * 5) / 100)
+ 3276800) / 10);
var3 = var1 + (var2 / 2);
var4 = (var3 / (calib->res_heat_range + 4));
var5 = 131 * calib->res_heat_val + 65536;
heatr_res_x100 = ((var4 / var5) - 250) * 34;
heatr_res = DIV_ROUND_CLOSEST(heatr_res_x100, 100);
return heatr_res;
}
/*
* Taken from Bosch BME680 API:
* https://github.com/BoschSensortec/BME680_driver/blob/63bb5336/bme680.c#L1188
*/
static u8 bme680_calc_heater_dur(u16 dur)
{
u8 durval, factor = 0;
if (dur >= 0xfc0) {
durval = 0xff; /* Max duration */
} else {
while (dur > 0x3F) {
dur = dur / 4;
factor += 1;
}
durval = dur + (factor * 64);
}
return durval;
}
static int bme680_set_mode(struct bme680_data *data, bool mode)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
if (mode) {
ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
BME680_MODE_MASK, BME680_MODE_FORCED);
if (ret < 0)
dev_err(dev, "failed to set forced mode\n");
} else {
ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
BME680_MODE_MASK, BME680_MODE_SLEEP);
if (ret < 0)
dev_err(dev, "failed to set sleep mode\n");
}
return ret;
}
static u8 bme680_oversampling_to_reg(u8 val)
{
return ilog2(val) + 1;
}
/*
* Taken from Bosch BME680 API:
* https://github.com/boschsensortec/BME68x_SensorAPI/blob/v4.4.8/bme68x.c#L490
*/
static int bme680_wait_for_eoc(struct bme680_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
/*
* (Sum of oversampling ratios * time per oversampling) +
* TPH measurement + gas measurement + wait transition from forced mode
* + heater duration
*/
int wait_eoc_us = ((data->oversampling_temp + data->oversampling_press +
data->oversampling_humid) * 1936) + (477 * 4) +
(477 * 5) + 1000 + (data->heater_dur * 1000);
usleep_range(wait_eoc_us, wait_eoc_us + 100);
ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &data->check);
if (ret) {
dev_err(dev, "failed to read measurement status register.\n");
return ret;
}
if (data->check & BME680_MEAS_BIT) {
dev_err(dev, "Device measurement cycle incomplete.\n");
return -EBUSY;
}
if (!(data->check & BME680_NEW_DATA_BIT)) {
dev_err(dev, "No new data available from the device.\n");
return -ENODATA;
}
return 0;
}
static int bme680_chip_config(struct bme680_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
u8 osrs;
osrs = FIELD_PREP(
BME680_OSRS_HUMIDITY_MASK,
bme680_oversampling_to_reg(data->oversampling_humid));
/*
* Highly recommended to set oversampling of humidity before
* temperature/pressure oversampling.
*/
ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_HUMIDITY,
BME680_OSRS_HUMIDITY_MASK, osrs);
if (ret < 0) {
dev_err(dev, "failed to write ctrl_hum register\n");
return ret;
}
/* IIR filter settings */
ret = regmap_update_bits(data->regmap, BME680_REG_CONFIG,
BME680_FILTER_MASK,
BME680_FILTER_COEFF_VAL);
if (ret < 0) {
dev_err(dev, "failed to write config register\n");
return ret;
}
osrs = FIELD_PREP(BME680_OSRS_TEMP_MASK,
bme680_oversampling_to_reg(data->oversampling_temp)) |
FIELD_PREP(BME680_OSRS_PRESS_MASK,
bme680_oversampling_to_reg(data->oversampling_press));
ret = regmap_write_bits(data->regmap, BME680_REG_CTRL_MEAS,
BME680_OSRS_TEMP_MASK | BME680_OSRS_PRESS_MASK,
osrs);
if (ret < 0) {
dev_err(dev, "failed to write ctrl_meas register\n");
return ret;
}
return 0;
}
static int bme680_gas_config(struct bme680_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
u8 heatr_res, heatr_dur;
/* Go to sleep */
ret = bme680_set_mode(data, false);
if (ret < 0)
return ret;
heatr_res = bme680_calc_heater_res(data, data->heater_temp);
/* set target heater temperature */
ret = regmap_write(data->regmap, BME680_REG_RES_HEAT_0, heatr_res);
if (ret < 0) {
dev_err(dev, "failed to write res_heat_0 register\n");
return ret;
}
heatr_dur = bme680_calc_heater_dur(data->heater_dur);
/* set target heating duration */
ret = regmap_write(data->regmap, BME680_REG_GAS_WAIT_0, heatr_dur);
if (ret < 0) {
dev_err(dev, "failed to write gas_wait_0 register\n");
return ret;
}
/* Enable the gas sensor and select heater profile set-point 0 */
ret = regmap_update_bits(data->regmap, BME680_REG_CTRL_GAS_1,
BME680_RUN_GAS_MASK | BME680_NB_CONV_MASK,
FIELD_PREP(BME680_RUN_GAS_MASK, 1) |
FIELD_PREP(BME680_NB_CONV_MASK, 0));
if (ret < 0)
dev_err(dev, "failed to write ctrl_gas_1 register\n");
return ret;
}
static int bme680_read_temp(struct bme680_data *data, int *val)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
u32 adc_temp;
s16 comp_temp;
/* set forced mode to trigger measurement */
ret = bme680_set_mode(data, true);
if (ret < 0)
return ret;
ret = bme680_wait_for_eoc(data);
if (ret)
return ret;
ret = regmap_bulk_read(data->regmap, BME680_REG_TEMP_MSB,
data->buf, BME680_TEMP_NUM_BYTES);
if (ret < 0) {
dev_err(dev, "failed to read temperature\n");
return ret;
}
adc_temp = FIELD_GET(BME680_MEAS_TRIM_MASK,
get_unaligned_be24(data->buf));
if (adc_temp == BME680_MEAS_SKIPPED) {
/* reading was skipped */
dev_err(dev, "reading temperature skipped\n");
return -EINVAL;
}
comp_temp = bme680_compensate_temp(data, adc_temp);
/*
* val might be NULL if we're called by the read_press/read_humid
* routine which is called to get t_fine value used in
* compensate_press/compensate_humid to get compensated
* pressure/humidity readings.
*/
if (val) {
*val = comp_temp * 10; /* Centidegrees to millidegrees */
return IIO_VAL_INT;
}
return ret;
}
static int bme680_read_press(struct bme680_data *data,
int *val, int *val2)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
u32 adc_press;
/* Read and compensate temperature to get a reading of t_fine */
ret = bme680_read_temp(data, NULL);
if (ret < 0)
return ret;
ret = regmap_bulk_read(data->regmap, BME680_REG_PRESS_MSB,
data->buf, BME680_PRESS_NUM_BYTES);
if (ret < 0) {
dev_err(dev, "failed to read pressure\n");
return ret;
}
adc_press = FIELD_GET(BME680_MEAS_TRIM_MASK,
get_unaligned_be24(data->buf));
if (adc_press == BME680_MEAS_SKIPPED) {
/* reading was skipped */
dev_err(dev, "reading pressure skipped\n");
return -EINVAL;
}
*val = bme680_compensate_press(data, adc_press);
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
}
static int bme680_read_humid(struct bme680_data *data,
int *val, int *val2)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
u16 adc_humidity;
u32 comp_humidity;
/* Read and compensate temperature to get a reading of t_fine */
ret = bme680_read_temp(data, NULL);
if (ret < 0)
return ret;
ret = regmap_bulk_read(data->regmap, BME680_REG_HUMIDITY_MSB,
&data->be16, BME680_HUMID_NUM_BYTES);
if (ret < 0) {
dev_err(dev, "failed to read humidity\n");
return ret;
}
adc_humidity = be16_to_cpu(data->be16);
if (adc_humidity == BME680_MEAS_SKIPPED) {
/* reading was skipped */
dev_err(dev, "reading humidity skipped\n");
return -EINVAL;
}
comp_humidity = bme680_compensate_humid(data, adc_humidity);
*val = comp_humidity;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
}
static int bme680_read_gas(struct bme680_data *data,
int *val)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
u16 adc_gas_res, gas_regs_val;
u8 gas_range;
/* Set heater settings */
ret = bme680_gas_config(data);
if (ret < 0) {
dev_err(dev, "failed to set gas config\n");
return ret;
}
/* set forced mode to trigger measurement */
ret = bme680_set_mode(data, true);
if (ret < 0)
return ret;
ret = bme680_wait_for_eoc(data);
if (ret)
return ret;
ret = regmap_read(data->regmap, BME680_REG_MEAS_STAT_0, &data->check);
if (data->check & BME680_GAS_MEAS_BIT) {
dev_err(dev, "gas measurement incomplete\n");
return -EBUSY;
}
ret = regmap_bulk_read(data->regmap, BME680_REG_GAS_MSB,
&data->be16, BME680_GAS_NUM_BYTES);
if (ret < 0) {
dev_err(dev, "failed to read gas resistance\n");
return ret;
}
gas_regs_val = be16_to_cpu(data->be16);
adc_gas_res = FIELD_GET(BME680_ADC_GAS_RES, gas_regs_val);
/*
* occurs if either the gas heating duration was insuffient
* to reach the target heater temperature or the target
* heater temperature was too high for the heater sink to
* reach.
*/
if ((gas_regs_val & BME680_GAS_STAB_BIT) == 0) {
dev_err(dev, "heater failed to reach the target temperature\n");
return -EINVAL;
}
gas_range = FIELD_GET(BME680_GAS_RANGE_MASK, gas_regs_val);
*val = bme680_compensate_gas(data, adc_gas_res, gas_range);
return IIO_VAL_INT;
}
static int bme680_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bme680_data *data = iio_priv(indio_dev);
guard(mutex)(&data->lock);
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_TEMP:
return bme680_read_temp(data, val);
case IIO_PRESSURE:
return bme680_read_press(data, val, val2);
case IIO_HUMIDITYRELATIVE:
return bme680_read_humid(data, val, val2);
case IIO_RESISTANCE:
return bme680_read_gas(data, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->type) {
case IIO_TEMP:
*val = data->oversampling_temp;
return IIO_VAL_INT;
case IIO_PRESSURE:
*val = data->oversampling_press;
return IIO_VAL_INT;
case IIO_HUMIDITYRELATIVE:
*val = data->oversampling_humid;
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static bool bme680_is_valid_oversampling(int rate)
{
return (rate > 0 && rate <= 16 && is_power_of_2(rate));
}
static int bme680_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bme680_data *data = iio_priv(indio_dev);
guard(mutex)(&data->lock);
if (val2 != 0)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
{
if (!bme680_is_valid_oversampling(val))
return -EINVAL;
switch (chan->type) {
case IIO_TEMP:
data->oversampling_temp = val;
break;
case IIO_PRESSURE:
data->oversampling_press = val;
break;
case IIO_HUMIDITYRELATIVE:
data->oversampling_humid = val;
break;
default:
return -EINVAL;
}
return bme680_chip_config(data);
}
default:
return -EINVAL;
}
}
static const char bme680_oversampling_ratio_show[] = "1 2 4 8 16";
static IIO_CONST_ATTR(oversampling_ratio_available,
bme680_oversampling_ratio_show);
static struct attribute *bme680_attributes[] = {
&iio_const_attr_oversampling_ratio_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bme680_attribute_group = {
.attrs = bme680_attributes,
};
static const struct iio_info bme680_info = {
.read_raw = &bme680_read_raw,
.write_raw = &bme680_write_raw,
.attrs = &bme680_attribute_group,
};
int bme680_core_probe(struct device *dev, struct regmap *regmap,
const char *name)
{
struct iio_dev *indio_dev;
struct bme680_data *data;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
mutex_init(&data->lock);
dev_set_drvdata(dev, indio_dev);
data->regmap = regmap;
indio_dev->name = name;
indio_dev->channels = bme680_channels;
indio_dev->num_channels = ARRAY_SIZE(bme680_channels);
indio_dev->info = &bme680_info;
indio_dev->modes = INDIO_DIRECT_MODE;
/* default values for the sensor */
data->oversampling_humid = 2; /* 2X oversampling rate */
data->oversampling_press = 4; /* 4X oversampling rate */
data->oversampling_temp = 8; /* 8X oversampling rate */
data->heater_temp = 320; /* degree Celsius */
data->heater_dur = 150; /* milliseconds */
ret = regmap_write(regmap, BME680_REG_SOFT_RESET,
BME680_CMD_SOFTRESET);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to reset chip\n");
usleep_range(BME680_STARTUP_TIME_US, BME680_STARTUP_TIME_US + 1000);
ret = regmap_read(regmap, BME680_REG_CHIP_ID, &data->check);
if (ret < 0)
return dev_err_probe(dev, ret, "Error reading chip ID\n");
if (data->check != BME680_CHIP_ID_VAL) {
dev_err(dev, "Wrong chip ID, got %x expected %x\n",
data->check, BME680_CHIP_ID_VAL);
return -ENODEV;
}
ret = bme680_read_calib(data, &data->bme680);
if (ret < 0) {
return dev_err_probe(dev, ret,
"failed to read calibration coefficients at probe\n");
}
ret = bme680_chip_config(data);
if (ret < 0)
return dev_err_probe(dev, ret,
"failed to set chip_config data\n");
ret = bme680_gas_config(data);
if (ret < 0)
return dev_err_probe(dev, ret,
"failed to set gas config data\n");
return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL_NS_GPL(bme680_core_probe, IIO_BME680);
MODULE_AUTHOR("Himanshu Jha <himanshujha199640@gmail.com>");
MODULE_DESCRIPTION("Bosch BME680 Driver");
MODULE_LICENSE("GPL v2");
|