1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices Generic AXI DAC IP core
* Link: https://wiki.analog.com/resources/fpga/docs/axi_dac_ip
*
* Copyright 2016-2024 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/limits.h>
#include <linux/kstrtox.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/units.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/iio/backend.h>
#include <linux/iio/buffer-dmaengine.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include "ad3552r-hs.h"
/*
* Register definitions:
* https://wiki.analog.com/resources/fpga/docs/axi_dac_ip#register_map
*/
/* Base controls */
#define AXI_DAC_CONFIG_REG 0x0c
#define AXI_DAC_CONFIG_DDS_DISABLE BIT(6)
/* DAC controls */
#define AXI_DAC_RSTN_REG 0x0040
#define AXI_DAC_RSTN_CE_N BIT(2)
#define AXI_DAC_RSTN_MMCM_RSTN BIT(1)
#define AXI_DAC_RSTN_RSTN BIT(0)
#define AXI_DAC_CNTRL_1_REG 0x0044
#define AXI_DAC_CNTRL_1_SYNC BIT(0)
#define AXI_DAC_CNTRL_2_REG 0x0048
#define AXI_DAC_CNTRL_2_SDR_DDR_N BIT(16)
#define AXI_DAC_CNTRL_2_SYMB_8B BIT(14)
#define ADI_DAC_CNTRL_2_R1_MODE BIT(5)
#define AXI_DAC_CNTRL_2_UNSIGNED_DATA BIT(4)
#define AXI_DAC_STATUS_1_REG 0x0054
#define AXI_DAC_STATUS_2_REG 0x0058
#define AXI_DAC_DRP_STATUS_REG 0x0074
#define AXI_DAC_DRP_STATUS_DRP_LOCKED BIT(17)
#define AXI_DAC_CUSTOM_RD_REG 0x0080
#define AXI_DAC_CUSTOM_WR_REG 0x0084
#define AXI_DAC_CUSTOM_WR_DATA_8 GENMASK(23, 16)
#define AXI_DAC_CUSTOM_WR_DATA_16 GENMASK(23, 8)
#define AXI_DAC_UI_STATUS_REG 0x0088
#define AXI_DAC_UI_STATUS_IF_BUSY BIT(4)
#define AXI_DAC_CUSTOM_CTRL_REG 0x008C
#define AXI_DAC_CUSTOM_CTRL_ADDRESS GENMASK(31, 24)
#define AXI_DAC_CUSTOM_CTRL_SYNCED_TRANSFER BIT(2)
#define AXI_DAC_CUSTOM_CTRL_STREAM BIT(1)
#define AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA BIT(0)
#define AXI_DAC_CUSTOM_CTRL_STREAM_ENABLE (AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA | \
AXI_DAC_CUSTOM_CTRL_STREAM)
/* DAC Channel controls */
#define AXI_DAC_CHAN_CNTRL_1_REG(c) (0x0400 + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_3_REG(c) (0x0408 + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_3_SCALE_SIGN BIT(15)
#define AXI_DAC_CHAN_CNTRL_3_SCALE_INT BIT(14)
#define AXI_DAC_CHAN_CNTRL_3_SCALE GENMASK(14, 0)
#define AXI_DAC_CHAN_CNTRL_2_REG(c) (0x0404 + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_2_PHASE GENMASK(31, 16)
#define AXI_DAC_CHAN_CNTRL_2_FREQUENCY GENMASK(15, 0)
#define AXI_DAC_CHAN_CNTRL_4_REG(c) (0x040c + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_7_REG(c) (0x0418 + (c) * 0x40)
#define AXI_DAC_CHAN_CNTRL_7_DATA_SEL GENMASK(3, 0)
#define AXI_DAC_RD_ADDR(x) (BIT(7) | (x))
/* 360 degrees in rad */
#define AXI_DAC_2_PI_MEGA 6283190
enum {
AXI_DAC_DATA_INTERNAL_TONE,
AXI_DAC_DATA_DMA = 2,
AXI_DAC_DATA_INTERNAL_RAMP_16BIT = 11,
};
struct axi_dac_info {
unsigned int version;
const struct iio_backend_info *backend_info;
bool has_dac_clk;
bool has_child_nodes;
};
struct axi_dac_state {
struct regmap *regmap;
struct device *dev;
/*
* lock to protect multiple accesses to the device registers and global
* data/variables.
*/
struct mutex lock;
const struct axi_dac_info *info;
u64 dac_clk;
u32 reg_config;
bool int_tone;
int dac_clk_rate;
};
static int axi_dac_enable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
unsigned int __val;
int ret;
guard(mutex)(&st->lock);
ret = regmap_set_bits(st->regmap, AXI_DAC_RSTN_REG,
AXI_DAC_RSTN_MMCM_RSTN);
if (ret)
return ret;
/*
* Make sure the DRP (Dynamic Reconfiguration Port) is locked. Not all
* designs really use it but if they don't we still get the lock bit
* set. So let's do it all the time so the code is generic.
*/
ret = regmap_read_poll_timeout(st->regmap, AXI_DAC_DRP_STATUS_REG,
__val,
__val & AXI_DAC_DRP_STATUS_DRP_LOCKED,
100, 1000);
if (ret)
return ret;
return regmap_set_bits(st->regmap, AXI_DAC_RSTN_REG,
AXI_DAC_RSTN_RSTN | AXI_DAC_RSTN_MMCM_RSTN);
}
static void axi_dac_disable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
guard(mutex)(&st->lock);
regmap_write(st->regmap, AXI_DAC_RSTN_REG, 0);
}
static struct iio_buffer *axi_dac_request_buffer(struct iio_backend *back,
struct iio_dev *indio_dev)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
const char *dma_name;
if (device_property_read_string(st->dev, "dma-names", &dma_name))
dma_name = "tx";
return iio_dmaengine_buffer_setup_ext(st->dev, indio_dev, dma_name,
IIO_BUFFER_DIRECTION_OUT);
}
static void axi_dac_free_buffer(struct iio_backend *back,
struct iio_buffer *buffer)
{
iio_dmaengine_buffer_free(buffer);
}
enum {
AXI_DAC_FREQ_TONE_1,
AXI_DAC_FREQ_TONE_2,
AXI_DAC_SCALE_TONE_1,
AXI_DAC_SCALE_TONE_2,
AXI_DAC_PHASE_TONE_1,
AXI_DAC_PHASE_TONE_2,
};
static int __axi_dac_frequency_get(struct axi_dac_state *st, unsigned int chan,
unsigned int tone_2, unsigned int *freq)
{
u32 reg, raw;
int ret;
if (!st->dac_clk) {
dev_err(st->dev, "Sampling rate is 0...\n");
return -EINVAL;
}
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_4_REG(chan);
else
reg = AXI_DAC_CHAN_CNTRL_2_REG(chan);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
raw = FIELD_GET(AXI_DAC_CHAN_CNTRL_2_FREQUENCY, raw);
*freq = DIV_ROUND_CLOSEST_ULL(raw * st->dac_clk, BIT(16));
return 0;
}
static int axi_dac_frequency_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
unsigned int freq;
int ret;
scoped_guard(mutex, &st->lock) {
ret = __axi_dac_frequency_get(st, chan->channel, tone_2, &freq);
if (ret)
return ret;
}
return sysfs_emit(buf, "%u\n", freq);
}
static int axi_dac_scale_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
unsigned int scale, sign;
int ret, vals[2];
u32 reg, raw;
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_3_REG(chan->channel);
else
reg = AXI_DAC_CHAN_CNTRL_1_REG(chan->channel);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
sign = FIELD_GET(AXI_DAC_CHAN_CNTRL_3_SCALE_SIGN, raw);
raw = FIELD_GET(AXI_DAC_CHAN_CNTRL_3_SCALE, raw);
scale = DIV_ROUND_CLOSEST_ULL((u64)raw * MEGA,
AXI_DAC_CHAN_CNTRL_3_SCALE_INT);
vals[0] = scale / MEGA;
vals[1] = scale % MEGA;
if (sign) {
vals[0] *= -1;
if (!vals[0])
vals[1] *= -1;
}
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
vals);
}
static int axi_dac_phase_get(struct axi_dac_state *st,
const struct iio_chan_spec *chan, char *buf,
unsigned int tone_2)
{
u32 reg, raw, phase;
int ret, vals[2];
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_4_REG(chan->channel);
else
reg = AXI_DAC_CHAN_CNTRL_2_REG(chan->channel);
ret = regmap_read(st->regmap, reg, &raw);
if (ret)
return ret;
raw = FIELD_GET(AXI_DAC_CHAN_CNTRL_2_PHASE, raw);
phase = DIV_ROUND_CLOSEST_ULL((u64)raw * AXI_DAC_2_PI_MEGA, U16_MAX);
vals[0] = phase / MEGA;
vals[1] = phase % MEGA;
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
vals);
}
static int __axi_dac_frequency_set(struct axi_dac_state *st, unsigned int chan,
u64 sample_rate, unsigned int freq,
unsigned int tone_2)
{
u32 reg;
u16 raw;
int ret;
if (!sample_rate || freq > sample_rate / 2) {
dev_err(st->dev, "Invalid frequency(%u) dac_clk(%llu)\n",
freq, sample_rate);
return -EINVAL;
}
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_4_REG(chan);
else
reg = AXI_DAC_CHAN_CNTRL_2_REG(chan);
raw = DIV64_U64_ROUND_CLOSEST((u64)freq * BIT(16), sample_rate);
ret = regmap_update_bits(st->regmap, reg,
AXI_DAC_CHAN_CNTRL_2_FREQUENCY, raw);
if (ret)
return ret;
/* synchronize channels */
return regmap_set_bits(st->regmap, AXI_DAC_CNTRL_1_REG,
AXI_DAC_CNTRL_1_SYNC);
}
static int axi_dac_frequency_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
unsigned int freq;
int ret;
ret = kstrtou32(buf, 10, &freq);
if (ret)
return ret;
guard(mutex)(&st->lock);
ret = __axi_dac_frequency_set(st, chan->channel, st->dac_clk, freq,
tone_2);
if (ret)
return ret;
return len;
}
static int axi_dac_scale_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
int integer, frac, scale;
u32 raw = 0, reg;
int ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
if (ret)
return ret;
scale = integer * MEGA + frac;
if (scale <= -2 * (int)MEGA || scale >= 2 * (int)MEGA)
return -EINVAL;
/* format is 1.1.14 (sign, integer and fractional bits) */
if (scale < 0) {
raw = FIELD_PREP(AXI_DAC_CHAN_CNTRL_3_SCALE_SIGN, 1);
scale *= -1;
}
raw |= div_u64((u64)scale * AXI_DAC_CHAN_CNTRL_3_SCALE_INT, MEGA);
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_3_REG(chan->channel);
else
reg = AXI_DAC_CHAN_CNTRL_1_REG(chan->channel);
guard(mutex)(&st->lock);
ret = regmap_write(st->regmap, reg, raw);
if (ret)
return ret;
/* synchronize channels */
ret = regmap_set_bits(st->regmap, AXI_DAC_CNTRL_1_REG,
AXI_DAC_CNTRL_1_SYNC);
if (ret)
return ret;
return len;
}
static int axi_dac_phase_set(struct axi_dac_state *st,
const struct iio_chan_spec *chan,
const char *buf, size_t len, unsigned int tone_2)
{
int integer, frac, phase;
u32 raw, reg;
int ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
if (ret)
return ret;
phase = integer * MEGA + frac;
if (phase < 0 || phase > AXI_DAC_2_PI_MEGA)
return -EINVAL;
raw = DIV_ROUND_CLOSEST_ULL((u64)phase * U16_MAX, AXI_DAC_2_PI_MEGA);
if (tone_2)
reg = AXI_DAC_CHAN_CNTRL_4_REG(chan->channel);
else
reg = AXI_DAC_CHAN_CNTRL_2_REG(chan->channel);
guard(mutex)(&st->lock);
ret = regmap_update_bits(st->regmap, reg, AXI_DAC_CHAN_CNTRL_2_PHASE,
FIELD_PREP(AXI_DAC_CHAN_CNTRL_2_PHASE, raw));
if (ret)
return ret;
/* synchronize channels */
ret = regmap_set_bits(st->regmap, AXI_DAC_CNTRL_1_REG,
AXI_DAC_CNTRL_1_SYNC);
if (ret)
return ret;
return len;
}
static int axi_dac_ext_info_set(struct iio_backend *back, uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (private) {
case AXI_DAC_FREQ_TONE_1:
case AXI_DAC_FREQ_TONE_2:
return axi_dac_frequency_set(st, chan, buf, len,
private == AXI_DAC_FREQ_TONE_2);
case AXI_DAC_SCALE_TONE_1:
case AXI_DAC_SCALE_TONE_2:
return axi_dac_scale_set(st, chan, buf, len,
private == AXI_DAC_SCALE_TONE_2);
case AXI_DAC_PHASE_TONE_1:
case AXI_DAC_PHASE_TONE_2:
return axi_dac_phase_set(st, chan, buf, len,
private == AXI_DAC_PHASE_TONE_2);
default:
return -EOPNOTSUPP;
}
}
static int axi_dac_ext_info_get(struct iio_backend *back, uintptr_t private,
const struct iio_chan_spec *chan, char *buf)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (private) {
case AXI_DAC_FREQ_TONE_1:
case AXI_DAC_FREQ_TONE_2:
return axi_dac_frequency_get(st, chan, buf,
private - AXI_DAC_FREQ_TONE_1);
case AXI_DAC_SCALE_TONE_1:
case AXI_DAC_SCALE_TONE_2:
return axi_dac_scale_get(st, chan, buf,
private - AXI_DAC_SCALE_TONE_1);
case AXI_DAC_PHASE_TONE_1:
case AXI_DAC_PHASE_TONE_2:
return axi_dac_phase_get(st, chan, buf,
private - AXI_DAC_PHASE_TONE_1);
default:
return -EOPNOTSUPP;
}
}
static const struct iio_chan_spec_ext_info axi_dac_ext_info[] = {
IIO_BACKEND_EX_INFO("frequency0", IIO_SEPARATE, AXI_DAC_FREQ_TONE_1),
IIO_BACKEND_EX_INFO("frequency1", IIO_SEPARATE, AXI_DAC_FREQ_TONE_2),
IIO_BACKEND_EX_INFO("scale0", IIO_SEPARATE, AXI_DAC_SCALE_TONE_1),
IIO_BACKEND_EX_INFO("scale1", IIO_SEPARATE, AXI_DAC_SCALE_TONE_2),
IIO_BACKEND_EX_INFO("phase0", IIO_SEPARATE, AXI_DAC_PHASE_TONE_1),
IIO_BACKEND_EX_INFO("phase1", IIO_SEPARATE, AXI_DAC_PHASE_TONE_2),
{}
};
static int axi_dac_extend_chan(struct iio_backend *back,
struct iio_chan_spec *chan)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
if (chan->type != IIO_ALTVOLTAGE)
return -EINVAL;
if (st->reg_config & AXI_DAC_CONFIG_DDS_DISABLE)
/* nothing to extend */
return 0;
chan->ext_info = axi_dac_ext_info;
return 0;
}
static int axi_dac_data_source_set(struct iio_backend *back, unsigned int chan,
enum iio_backend_data_source data)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (data) {
case IIO_BACKEND_INTERNAL_CONTINUOUS_WAVE:
return regmap_update_bits(st->regmap,
AXI_DAC_CHAN_CNTRL_7_REG(chan),
AXI_DAC_CHAN_CNTRL_7_DATA_SEL,
AXI_DAC_DATA_INTERNAL_TONE);
case IIO_BACKEND_EXTERNAL:
return regmap_update_bits(st->regmap,
AXI_DAC_CHAN_CNTRL_7_REG(chan),
AXI_DAC_CHAN_CNTRL_7_DATA_SEL,
AXI_DAC_DATA_DMA);
case IIO_BACKEND_INTERNAL_RAMP_16BIT:
return regmap_update_bits(st->regmap,
AXI_DAC_CHAN_CNTRL_7_REG(chan),
AXI_DAC_CHAN_CNTRL_7_DATA_SEL,
AXI_DAC_DATA_INTERNAL_RAMP_16BIT);
default:
return -EINVAL;
}
}
static int axi_dac_set_sample_rate(struct iio_backend *back, unsigned int chan,
u64 sample_rate)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
unsigned int freq;
int ret, tone;
if (!sample_rate)
return -EINVAL;
if (st->reg_config & AXI_DAC_CONFIG_DDS_DISABLE)
/* sample_rate has no meaning if DDS is disabled */
return 0;
guard(mutex)(&st->lock);
/*
* If dac_clk is 0 then this must be the first time we're being notified
* about the interface sample rate. Hence, just update our internal
* variable and bail... If it's not 0, then we get the current DDS
* frequency (for the old rate) and update the registers for the new
* sample rate.
*/
if (!st->dac_clk) {
st->dac_clk = sample_rate;
return 0;
}
for (tone = 0; tone <= AXI_DAC_FREQ_TONE_2; tone++) {
ret = __axi_dac_frequency_get(st, chan, tone, &freq);
if (ret)
return ret;
ret = __axi_dac_frequency_set(st, chan, sample_rate, tone, freq);
if (ret)
return ret;
}
st->dac_clk = sample_rate;
return 0;
}
static int axi_dac_reg_access(struct iio_backend *back, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
if (readval)
return regmap_read(st->regmap, reg, readval);
return regmap_write(st->regmap, reg, writeval);
}
static int axi_dac_ddr_enable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
return regmap_clear_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_SDR_DDR_N);
}
static int axi_dac_ddr_disable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
return regmap_set_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_SDR_DDR_N);
}
static int axi_dac_data_stream_enable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
return regmap_set_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_STREAM_ENABLE);
}
static int axi_dac_data_stream_disable(struct iio_backend *back)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
return regmap_clear_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_STREAM_ENABLE);
}
static int axi_dac_data_transfer_addr(struct iio_backend *back, u32 address)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
if (address > FIELD_MAX(AXI_DAC_CUSTOM_CTRL_ADDRESS))
return -EINVAL;
/*
* Sample register address, when the DAC is configured, or stream
* start address when the FSM is in stream state.
*/
return regmap_update_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_ADDRESS,
FIELD_PREP(AXI_DAC_CUSTOM_CTRL_ADDRESS,
address));
}
static int axi_dac_data_format_set(struct iio_backend *back, unsigned int ch,
const struct iio_backend_data_fmt *data)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
switch (data->type) {
case IIO_BACKEND_DATA_UNSIGNED:
return regmap_clear_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_UNSIGNED_DATA);
default:
return -EINVAL;
}
}
static int __axi_dac_bus_reg_write(struct iio_backend *back, u32 reg,
u32 val, size_t data_size)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
int ret;
u32 ival;
/*
* Both AXI_DAC_CNTRL_2_REG and AXI_DAC_CUSTOM_WR_REG need to know
* the data size. So keeping data size control here only,
* since data size is mandatory for the current transfer.
* DDR state handled separately by specific backend calls,
* generally all raw register writes are SDR.
*/
if (data_size == sizeof(u16))
ival = FIELD_PREP(AXI_DAC_CUSTOM_WR_DATA_16, val);
else
ival = FIELD_PREP(AXI_DAC_CUSTOM_WR_DATA_8, val);
ret = regmap_write(st->regmap, AXI_DAC_CUSTOM_WR_REG, ival);
if (ret)
return ret;
if (data_size == sizeof(u8))
ret = regmap_set_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_SYMB_8B);
else
ret = regmap_clear_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
AXI_DAC_CNTRL_2_SYMB_8B);
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_ADDRESS,
FIELD_PREP(AXI_DAC_CUSTOM_CTRL_ADDRESS, reg));
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA,
AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA);
if (ret)
return ret;
ret = regmap_read_poll_timeout(st->regmap,
AXI_DAC_UI_STATUS_REG, ival,
FIELD_GET(AXI_DAC_UI_STATUS_IF_BUSY, ival) == 0,
10, 100 * KILO);
if (ret == -ETIMEDOUT)
dev_err(st->dev, "AXI read timeout\n");
/* Cleaning always AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA */
return regmap_clear_bits(st->regmap, AXI_DAC_CUSTOM_CTRL_REG,
AXI_DAC_CUSTOM_CTRL_TRANSFER_DATA);
}
static int axi_dac_bus_reg_write(struct iio_backend *back, u32 reg,
u32 val, size_t data_size)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
guard(mutex)(&st->lock);
return __axi_dac_bus_reg_write(back, reg, val, data_size);
}
static int axi_dac_bus_reg_read(struct iio_backend *back, u32 reg, u32 *val,
size_t data_size)
{
struct axi_dac_state *st = iio_backend_get_priv(back);
int ret;
guard(mutex)(&st->lock);
/*
* SPI, we write with read flag, then we read just at the AXI
* io address space to get data read.
*/
ret = __axi_dac_bus_reg_write(back, AXI_DAC_RD_ADDR(reg), 0,
data_size);
if (ret)
return ret;
return regmap_read(st->regmap, AXI_DAC_CUSTOM_RD_REG, val);
}
static void axi_dac_child_remove(void *data)
{
platform_device_unregister(data);
}
static int axi_dac_create_platform_device(struct axi_dac_state *st,
struct fwnode_handle *child)
{
struct ad3552r_hs_platform_data pdata = {
.bus_reg_read = axi_dac_bus_reg_read,
.bus_reg_write = axi_dac_bus_reg_write,
.bus_sample_data_clock_hz = st->dac_clk_rate,
};
struct platform_device_info pi = {
.parent = st->dev,
.name = fwnode_get_name(child),
.id = PLATFORM_DEVID_AUTO,
.fwnode = child,
.data = &pdata,
.size_data = sizeof(pdata),
};
struct platform_device *pdev;
pdev = platform_device_register_full(&pi);
if (IS_ERR(pdev))
return PTR_ERR(pdev);
return devm_add_action_or_reset(st->dev, axi_dac_child_remove, pdev);
}
static const struct iio_backend_ops axi_dac_generic_ops = {
.enable = axi_dac_enable,
.disable = axi_dac_disable,
.request_buffer = axi_dac_request_buffer,
.free_buffer = axi_dac_free_buffer,
.extend_chan_spec = axi_dac_extend_chan,
.ext_info_set = axi_dac_ext_info_set,
.ext_info_get = axi_dac_ext_info_get,
.data_source_set = axi_dac_data_source_set,
.set_sample_rate = axi_dac_set_sample_rate,
.debugfs_reg_access = iio_backend_debugfs_ptr(axi_dac_reg_access),
};
static const struct iio_backend_ops axi_ad3552r_ops = {
.enable = axi_dac_enable,
.disable = axi_dac_disable,
.request_buffer = axi_dac_request_buffer,
.free_buffer = axi_dac_free_buffer,
.data_source_set = axi_dac_data_source_set,
.ddr_enable = axi_dac_ddr_enable,
.ddr_disable = axi_dac_ddr_disable,
.data_stream_enable = axi_dac_data_stream_enable,
.data_stream_disable = axi_dac_data_stream_disable,
.data_format_set = axi_dac_data_format_set,
.data_transfer_addr = axi_dac_data_transfer_addr,
};
static const struct iio_backend_info axi_dac_generic = {
.name = "axi-dac",
.ops = &axi_dac_generic_ops,
};
static const struct iio_backend_info axi_ad3552r = {
.name = "axi-ad3552r",
.ops = &axi_ad3552r_ops,
};
static const struct regmap_config axi_dac_regmap_config = {
.val_bits = 32,
.reg_bits = 32,
.reg_stride = 4,
.max_register = 0x0800,
};
static int axi_dac_probe(struct platform_device *pdev)
{
struct axi_dac_state *st;
void __iomem *base;
unsigned int ver;
struct clk *clk;
int ret;
st = devm_kzalloc(&pdev->dev, sizeof(*st), GFP_KERNEL);
if (!st)
return -ENOMEM;
st->info = device_get_match_data(&pdev->dev);
if (!st->info)
return -ENODEV;
clk = devm_clk_get_enabled(&pdev->dev, "s_axi_aclk");
if (IS_ERR(clk)) {
/* Backward compat., old fdt versions without clock-names. */
clk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(&pdev->dev, PTR_ERR(clk),
"failed to get clock\n");
}
if (st->info->has_dac_clk) {
struct clk *dac_clk;
dac_clk = devm_clk_get_enabled(&pdev->dev, "dac_clk");
if (IS_ERR(dac_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(dac_clk),
"failed to get dac_clk clock\n");
/* We only care about the streaming mode rate */
st->dac_clk_rate = clk_get_rate(dac_clk) / 2;
}
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
st->dev = &pdev->dev;
st->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&axi_dac_regmap_config);
if (IS_ERR(st->regmap))
return dev_err_probe(&pdev->dev, PTR_ERR(st->regmap),
"failed to init register map\n");
/*
* Force disable the core. Up to the frontend to enable us. And we can
* still read/write registers...
*/
ret = regmap_write(st->regmap, AXI_DAC_RSTN_REG, 0);
if (ret)
return ret;
ret = regmap_read(st->regmap, ADI_AXI_REG_VERSION, &ver);
if (ret)
return ret;
if (ADI_AXI_PCORE_VER_MAJOR(ver) !=
ADI_AXI_PCORE_VER_MAJOR(st->info->version)) {
dev_err(&pdev->dev,
"Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
ADI_AXI_PCORE_VER_MAJOR(st->info->version),
ADI_AXI_PCORE_VER_MINOR(st->info->version),
ADI_AXI_PCORE_VER_PATCH(st->info->version),
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return -ENODEV;
}
/* Let's get the core read only configuration */
ret = regmap_read(st->regmap, AXI_DAC_CONFIG_REG, &st->reg_config);
if (ret)
return ret;
/*
* In some designs, setting the R1_MODE bit to 0 (which is the default
* value) causes all channels of the frontend to be routed to the same
* DMA (so they are sampled together). This is for things like
* Multiple-Input and Multiple-Output (MIMO). As most of the times we
* want independent channels let's override the core's default value and
* set the R1_MODE bit.
*/
ret = regmap_set_bits(st->regmap, AXI_DAC_CNTRL_2_REG,
ADI_DAC_CNTRL_2_R1_MODE);
if (ret)
return ret;
mutex_init(&st->lock);
ret = devm_iio_backend_register(&pdev->dev, st->info->backend_info, st);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"failed to register iio backend\n");
device_for_each_child_node_scoped(&pdev->dev, child) {
int val;
if (!st->info->has_child_nodes)
return dev_err_probe(&pdev->dev, -EINVAL,
"invalid fdt axi-dac compatible.");
/* Processing only reg 0 node */
ret = fwnode_property_read_u32(child, "reg", &val);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"invalid reg property.");
if (val != 0)
return dev_err_probe(&pdev->dev, -EINVAL,
"invalid node address.");
ret = axi_dac_create_platform_device(st, child);
if (ret)
return dev_err_probe(&pdev->dev, -EINVAL,
"cannot create device.");
}
dev_info(&pdev->dev, "AXI DAC IP core (%d.%.2d.%c) probed\n",
ADI_AXI_PCORE_VER_MAJOR(ver),
ADI_AXI_PCORE_VER_MINOR(ver),
ADI_AXI_PCORE_VER_PATCH(ver));
return 0;
}
static const struct axi_dac_info dac_generic = {
.version = ADI_AXI_PCORE_VER(9, 1, 'b'),
.backend_info = &axi_dac_generic,
};
static const struct axi_dac_info dac_ad3552r = {
.version = ADI_AXI_PCORE_VER(9, 1, 'b'),
.backend_info = &axi_ad3552r,
.has_dac_clk = true,
.has_child_nodes = true,
};
static const struct of_device_id axi_dac_of_match[] = {
{ .compatible = "adi,axi-dac-9.1.b", .data = &dac_generic },
{ .compatible = "adi,axi-ad3552r", .data = &dac_ad3552r },
{}
};
MODULE_DEVICE_TABLE(of, axi_dac_of_match);
static struct platform_driver axi_dac_driver = {
.driver = {
.name = "adi-axi-dac",
.of_match_table = axi_dac_of_match,
},
.probe = axi_dac_probe,
};
module_platform_driver(axi_dac_driver);
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices Generic AXI DAC IP core driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_DMAENGINE_BUFFER);
MODULE_IMPORT_NS(IIO_BACKEND);
|