summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-bcm2835.c
blob: b784c9fdf9ecff805666b3dd4de6a27e1737ad3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Driver for Broadcom BCM2835 SPI Controllers
 *
 * Copyright (C) 2012 Chris Boot
 * Copyright (C) 2013 Stephen Warren
 * Copyright (C) 2015 Martin Sperl
 *
 * This driver is inspired by:
 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
 */

#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/machine.h> /* FIXME: using chip internals */
#include <linux/gpio/driver.h> /* FIXME: using chip internals */
#include <linux/of_irq.h>
#include <linux/spi/spi.h>

/* SPI register offsets */
#define BCM2835_SPI_CS			0x00
#define BCM2835_SPI_FIFO		0x04
#define BCM2835_SPI_CLK			0x08
#define BCM2835_SPI_DLEN		0x0c
#define BCM2835_SPI_LTOH		0x10
#define BCM2835_SPI_DC			0x14

/* Bitfields in CS */
#define BCM2835_SPI_CS_LEN_LONG		0x02000000
#define BCM2835_SPI_CS_DMA_LEN		0x01000000
#define BCM2835_SPI_CS_CSPOL2		0x00800000
#define BCM2835_SPI_CS_CSPOL1		0x00400000
#define BCM2835_SPI_CS_CSPOL0		0x00200000
#define BCM2835_SPI_CS_RXF		0x00100000
#define BCM2835_SPI_CS_RXR		0x00080000
#define BCM2835_SPI_CS_TXD		0x00040000
#define BCM2835_SPI_CS_RXD		0x00020000
#define BCM2835_SPI_CS_DONE		0x00010000
#define BCM2835_SPI_CS_LEN		0x00002000
#define BCM2835_SPI_CS_REN		0x00001000
#define BCM2835_SPI_CS_ADCS		0x00000800
#define BCM2835_SPI_CS_INTR		0x00000400
#define BCM2835_SPI_CS_INTD		0x00000200
#define BCM2835_SPI_CS_DMAEN		0x00000100
#define BCM2835_SPI_CS_TA		0x00000080
#define BCM2835_SPI_CS_CSPOL		0x00000040
#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
#define BCM2835_SPI_CS_CPOL		0x00000008
#define BCM2835_SPI_CS_CPHA		0x00000004
#define BCM2835_SPI_CS_CS_10		0x00000002
#define BCM2835_SPI_CS_CS_01		0x00000001

#define BCM2835_SPI_FIFO_SIZE		64
#define BCM2835_SPI_FIFO_SIZE_3_4	48
#define BCM2835_SPI_DMA_MIN_LENGTH	96
#define BCM2835_SPI_NUM_CS		3   /* raise as necessary */
#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
				| SPI_NO_CS | SPI_3WIRE)

#define DRV_NAME	"spi-bcm2835"

/* define polling limits */
unsigned int polling_limit_us = 30;
module_param(polling_limit_us, uint, 0664);
MODULE_PARM_DESC(polling_limit_us,
		 "time in us to run a transfer in polling mode\n");

/**
 * struct bcm2835_spi - BCM2835 SPI controller
 * @regs: base address of register map
 * @clk: core clock, divided to calculate serial clock
 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
 * @tfr: SPI transfer currently processed
 * @tx_buf: pointer whence next transmitted byte is read
 * @rx_buf: pointer where next received byte is written
 * @tx_len: remaining bytes to transmit
 * @rx_len: remaining bytes to receive
 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
 *	length is not a multiple of 4 (to overcome hardware limitation)
 * @rx_prologue: bytes received without DMA if first RX sglist entry's
 *	length is not a multiple of 4 (to overcome hardware limitation)
 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
 * @prepare_cs: precalculated CS register value for ->prepare_message()
 *	(uses slave-specific clock polarity and phase settings)
 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 *      unloading the module
 * @count_transfer_polling: count of how often polling mode is used
 * @count_transfer_irq: count of how often interrupt mode is used
 * @count_transfer_irq_after_polling: count of how often we fall back to
 *      interrupt mode after starting in polling mode.
 *      These are counted as well in @count_transfer_polling and
 *      @count_transfer_irq
 * @count_transfer_dma: count how often dma mode is used
 * @chip_select: SPI slave currently selected
 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 * @tx_dma_active: whether a TX DMA descriptor is in progress
 * @rx_dma_active: whether a RX DMA descriptor is in progress
 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 *	(cyclically copies from zero page to TX FIFO)
 * @fill_tx_addr: bus address of zero page
 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 * @clear_rx_addr: bus address of @clear_rx_cs
 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 *	(uses slave-specific clock polarity and phase settings)
 */
struct bcm2835_spi {
	void __iomem *regs;
	struct clk *clk;
	int irq;
	struct spi_transfer *tfr;
	const u8 *tx_buf;
	u8 *rx_buf;
	int tx_len;
	int rx_len;
	int tx_prologue;
	int rx_prologue;
	unsigned int tx_spillover;
	u32 prepare_cs[BCM2835_SPI_NUM_CS];

	struct dentry *debugfs_dir;
	u64 count_transfer_polling;
	u64 count_transfer_irq;
	u64 count_transfer_irq_after_polling;
	u64 count_transfer_dma;

	u8 chip_select;
	unsigned int tx_dma_active;
	unsigned int rx_dma_active;
	struct dma_async_tx_descriptor *fill_tx_desc;
	dma_addr_t fill_tx_addr;
	struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
	dma_addr_t clear_rx_addr;
	u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
};

#if defined(CONFIG_DEBUG_FS)
static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
				   const char *dname)
{
	char name[64];
	struct dentry *dir;

	/* get full name */
	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);

	/* the base directory */
	dir = debugfs_create_dir(name, NULL);
	bs->debugfs_dir = dir;

	/* the counters */
	debugfs_create_u64("count_transfer_polling", 0444, dir,
			   &bs->count_transfer_polling);
	debugfs_create_u64("count_transfer_irq", 0444, dir,
			   &bs->count_transfer_irq);
	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
			   &bs->count_transfer_irq_after_polling);
	debugfs_create_u64("count_transfer_dma", 0444, dir,
			   &bs->count_transfer_dma);
}

static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
{
	debugfs_remove_recursive(bs->debugfs_dir);
	bs->debugfs_dir = NULL;
}
#else
static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
				   const char *dname)
{
}

static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
{
}
#endif /* CONFIG_DEBUG_FS */

static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
{
	return readl(bs->regs + reg);
}

static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
{
	writel(val, bs->regs + reg);
}

static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
{
	u8 byte;

	while ((bs->rx_len) &&
	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
		if (bs->rx_buf)
			*bs->rx_buf++ = byte;
		bs->rx_len--;
	}
}

static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
{
	u8 byte;

	while ((bs->tx_len) &&
	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
		bs->tx_len--;
	}
}

/**
 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 * @bs: BCM2835 SPI controller
 * @count: bytes to read from RX FIFO
 *
 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 * in the CS register is set (such that a read from the FIFO register receives
 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 */
static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
{
	u32 val;
	int len;

	bs->rx_len -= count;

	while (count > 0) {
		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
		len = min(count, 4);
		memcpy(bs->rx_buf, &val, len);
		bs->rx_buf += len;
		count -= 4;
	}
}

/**
 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 * @bs: BCM2835 SPI controller
 * @count: bytes to write to TX FIFO
 *
 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 * in the CS register is set (such that a write to the FIFO register transmits
 * 32-bit instead of just 8-bit).
 */
static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
{
	u32 val;
	int len;

	bs->tx_len -= count;

	while (count > 0) {
		if (bs->tx_buf) {
			len = min(count, 4);
			memcpy(&val, bs->tx_buf, len);
			bs->tx_buf += len;
		} else {
			val = 0;
		}
		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
		count -= 4;
	}
}

/**
 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 * @bs: BCM2835 SPI controller
 *
 * The caller must ensure that the RX FIFO can accommodate as many bytes
 * as have been written to the TX FIFO:  Transmission is halted once the
 * RX FIFO is full, causing this function to spin forever.
 */
static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
{
	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
		cpu_relax();
}

/**
 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 * @bs: BCM2835 SPI controller
 * @count: bytes available for reading in RX FIFO
 */
static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
{
	u8 val;

	count = min(count, bs->rx_len);
	bs->rx_len -= count;

	while (count) {
		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
		if (bs->rx_buf)
			*bs->rx_buf++ = val;
		count--;
	}
}

/**
 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 * @bs: BCM2835 SPI controller
 * @count: bytes available for writing in TX FIFO
 */
static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
{
	u8 val;

	count = min(count, bs->tx_len);
	bs->tx_len -= count;

	while (count) {
		val = bs->tx_buf ? *bs->tx_buf++ : 0;
		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
		count--;
	}
}

static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);

	/* Disable SPI interrupts and transfer */
	cs &= ~(BCM2835_SPI_CS_INTR |
		BCM2835_SPI_CS_INTD |
		BCM2835_SPI_CS_DMAEN |
		BCM2835_SPI_CS_TA);
	/*
	 * Transmission sometimes breaks unless the DONE bit is written at the
	 * end of every transfer.  The spec says it's a RO bit.  Either the
	 * spec is wrong and the bit is actually of type RW1C, or it's a
	 * hardware erratum.
	 */
	cs |= BCM2835_SPI_CS_DONE;
	/* and reset RX/TX FIFOS */
	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;

	/* and reset the SPI_HW */
	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
	/* as well as DLEN */
	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
}

static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
{
	struct spi_controller *ctlr = dev_id;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);

	/*
	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
	 * or if RXR is set (RX FIFO >= ¾ full).
	 */
	if (cs & BCM2835_SPI_CS_RXF)
		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
	else if (cs & BCM2835_SPI_CS_RXR)
		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);

	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);

	/* Read as many bytes as possible from FIFO */
	bcm2835_rd_fifo(bs);
	/* Write as many bytes as possible to FIFO */
	bcm2835_wr_fifo(bs);

	if (!bs->rx_len) {
		/* Transfer complete - reset SPI HW */
		bcm2835_spi_reset_hw(ctlr);
		/* wake up the framework */
		complete(&ctlr->xfer_completion);
	}

	return IRQ_HANDLED;
}

static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
					struct spi_device *spi,
					struct spi_transfer *tfr,
					u32 cs, bool fifo_empty)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	/* update usage statistics */
	bs->count_transfer_irq++;

	/*
	 * Enable HW block, but with interrupts still disabled.
	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
	 */
	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);

	/* fill TX FIFO as much as possible */
	if (fifo_empty)
		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
	bcm2835_wr_fifo(bs);

	/* enable interrupts */
	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
	bcm2835_wr(bs, BCM2835_SPI_CS, cs);

	/* signal that we need to wait for completion */
	return 1;
}

/**
 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 * @ctlr: SPI master controller
 * @tfr: SPI transfer
 * @bs: BCM2835 SPI controller
 * @cs: CS register
 *
 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 * Only the final write access is permitted to transmit less than 4 bytes, the
 * SPI controller deduces its intended size from the DLEN register.
 *
 * If a TX or RX sglist contains multiple entries, one per page, and the first
 * entry starts in the middle of a page, that first entry's length may not be
 * a multiple of 4.  Subsequent entries are fine because they span an entire
 * page, hence do have a length that's a multiple of 4.
 *
 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 * because they are contiguous in physical memory and therefore not split on
 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 * buffers.
 *
 * The DMA engine is incapable of combining sglist entries into a continuous
 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 * entry is rounded up by throwing away received bytes.
 *
 * Overcome this limitation by transferring the first few bytes without DMA:
 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 *
 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 * Caution, the additional 4 bytes spill over to the second TX sglist entry
 * if the length of the first is *exactly* 1.
 *
 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 *
 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 * the width but also garbles the FIFO's contents.  The prologue must therefore
 * be transmitted in 32-bit width to ensure that the following DMA transfer can
 * pick up the residue in the RX FIFO in ungarbled form.
 */
static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
					  struct spi_transfer *tfr,
					  struct bcm2835_spi *bs,
					  u32 cs)
{
	int tx_remaining;

	bs->tfr		 = tfr;
	bs->tx_prologue  = 0;
	bs->rx_prologue  = 0;
	bs->tx_spillover = false;

	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;

	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;

		if (bs->rx_prologue > bs->tx_prologue) {
			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
				bs->tx_prologue  = bs->rx_prologue;
			} else {
				bs->tx_prologue += 4;
				bs->tx_spillover =
					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
			}
		}
	}

	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
	if (!bs->tx_prologue)
		return;

	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
	if (bs->rx_prologue) {
		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
						  | BCM2835_SPI_CS_DMAEN);
		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
		bcm2835_wait_tx_fifo_empty(bs);
		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
						  | BCM2835_SPI_CS_CLEAR_TX
						  | BCM2835_SPI_CS_DONE);

		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
					   sg_dma_address(&tfr->rx_sg.sgl[0]),
					   bs->rx_prologue, DMA_FROM_DEVICE);

		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
	}

	if (!bs->tx_buf)
		return;

	/*
	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
	 * Also adjust second entry if prologue spills over to it.
	 */
	tx_remaining = bs->tx_prologue - bs->rx_prologue;
	if (tx_remaining) {
		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
						  | BCM2835_SPI_CS_DMAEN);
		bcm2835_wr_fifo_count(bs, tx_remaining);
		bcm2835_wait_tx_fifo_empty(bs);
		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
						  | BCM2835_SPI_CS_DONE);
	}

	if (likely(!bs->tx_spillover)) {
		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
	} else {
		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
	}
}

/**
 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 * @bs: BCM2835 SPI controller
 *
 * Undo changes which were made to an SPI transfer's sglist when transmitting
 * the prologue.  This is necessary to ensure the same memory ranges are
 * unmapped that were originally mapped.
 */
static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
{
	struct spi_transfer *tfr = bs->tfr;

	if (!bs->tx_prologue)
		return;

	if (bs->rx_prologue) {
		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
	}

	if (!bs->tx_buf)
		goto out;

	if (likely(!bs->tx_spillover)) {
		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
	} else {
		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
	}
out:
	bs->tx_prologue = 0;
}

/**
 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 * @data: SPI master controller
 *
 * Used for bidirectional and RX-only transfers.
 */
static void bcm2835_spi_dma_rx_done(void *data)
{
	struct spi_controller *ctlr = data;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	/* terminate tx-dma as we do not have an irq for it
	 * because when the rx dma will terminate and this callback
	 * is called the tx-dma must have finished - can't get to this
	 * situation otherwise...
	 */
	dmaengine_terminate_async(ctlr->dma_tx);
	bs->tx_dma_active = false;
	bs->rx_dma_active = false;
	bcm2835_spi_undo_prologue(bs);

	/* reset fifo and HW */
	bcm2835_spi_reset_hw(ctlr);

	/* and mark as completed */;
	complete(&ctlr->xfer_completion);
}

/**
 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 * @data: SPI master controller
 *
 * Used for TX-only transfers.
 */
static void bcm2835_spi_dma_tx_done(void *data)
{
	struct spi_controller *ctlr = data;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	/* busy-wait for TX FIFO to empty */
	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
		bcm2835_wr(bs, BCM2835_SPI_CS,
			   bs->clear_rx_cs[bs->chip_select]);

	bs->tx_dma_active = false;
	smp_wmb();

	/*
	 * In case of a very short transfer, RX DMA may not have been
	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
	 * to terminate it immediately after issuing.
	 */
	if (cmpxchg(&bs->rx_dma_active, true, false))
		dmaengine_terminate_async(ctlr->dma_rx);

	bcm2835_spi_undo_prologue(bs);
	bcm2835_spi_reset_hw(ctlr);
	complete(&ctlr->xfer_completion);
}

/**
 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 * @ctlr: SPI master controller
 * @spi: SPI slave
 * @tfr: SPI transfer
 * @bs: BCM2835 SPI controller
 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 *
 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 * Return 0 on success or a negative error number.
 */
static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
				  struct spi_device *spi,
				  struct spi_transfer *tfr,
				  struct bcm2835_spi *bs,
				  bool is_tx)
{
	struct dma_chan *chan;
	struct scatterlist *sgl;
	unsigned int nents;
	enum dma_transfer_direction dir;
	unsigned long flags;

	struct dma_async_tx_descriptor *desc;
	dma_cookie_t cookie;

	if (is_tx) {
		dir   = DMA_MEM_TO_DEV;
		chan  = ctlr->dma_tx;
		nents = tfr->tx_sg.nents;
		sgl   = tfr->tx_sg.sgl;
		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
	} else {
		dir   = DMA_DEV_TO_MEM;
		chan  = ctlr->dma_rx;
		nents = tfr->rx_sg.nents;
		sgl   = tfr->rx_sg.sgl;
		flags = DMA_PREP_INTERRUPT;
	}
	/* prepare the channel */
	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
	if (!desc)
		return -EINVAL;

	/*
	 * Completion is signaled by the RX channel for bidirectional and
	 * RX-only transfers; else by the TX channel for TX-only transfers.
	 */
	if (!is_tx) {
		desc->callback = bcm2835_spi_dma_rx_done;
		desc->callback_param = ctlr;
	} else if (!tfr->rx_buf) {
		desc->callback = bcm2835_spi_dma_tx_done;
		desc->callback_param = ctlr;
		bs->chip_select = spi->chip_select;
	}

	/* submit it to DMA-engine */
	cookie = dmaengine_submit(desc);

	return dma_submit_error(cookie);
}

/**
 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 * @ctlr: SPI master controller
 * @spi: SPI slave
 * @tfr: SPI transfer
 * @cs: CS register
 *
 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 * the TX and RX DMA channel to copy between memory and FIFO register.
 *
 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 * memory is pointless.  However not reading the RX FIFO isn't an option either
 * because transmission is halted once it's full.  As a workaround, cyclically
 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 *
 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 * this is called only once, on slave registration.  A DMA descriptor to write
 * this value is preallocated in bcm2835_dma_init().  All that's left to do
 * when performing a TX-only transfer is to submit this descriptor to the RX
 * DMA channel.  Latency is thereby minimized.  The descriptor does not
 * generate any interrupts while running.  It must be terminated once the
 * TX DMA channel is done.
 *
 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 * reduction in bus traffic and thus energy consumption is achieved.
 *
 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 * copying from the zero page.  The DMA descriptor to do this is preallocated
 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 * done and can then be reused.
 *
 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 * page and utilizes the DMA controller's ability to synthesize zeroes instead
 * of copying them from memory.  This reduces traffic on the memory bus.  The
 * feature is not available on so-called "lite" channels, but normally TX DMA
 * is backed by a full-featured channel.
 *
 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 * has been counted down to zero (hardware erratum).  Thus, when the transfer
 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 * performed at the end of an RX-only transfer.
 */
static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
					struct spi_device *spi,
					struct spi_transfer *tfr,
					u32 cs)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	dma_cookie_t cookie;
	int ret;

	/* update usage statistics */
	bs->count_transfer_dma++;

	/*
	 * Transfer first few bytes without DMA if length of first TX or RX
	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
	 */
	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);

	/* setup tx-DMA */
	if (bs->tx_buf) {
		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
	} else {
		cookie = dmaengine_submit(bs->fill_tx_desc);
		ret = dma_submit_error(cookie);
	}
	if (ret)
		goto err_reset_hw;

	/* set the DMA length */
	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);

	/* start the HW */
	bcm2835_wr(bs, BCM2835_SPI_CS,
		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);

	bs->tx_dma_active = true;
	smp_wmb();

	/* start TX early */
	dma_async_issue_pending(ctlr->dma_tx);

	/* setup rx-DMA late - to run transfers while
	 * mapping of the rx buffers still takes place
	 * this saves 10us or more.
	 */
	if (bs->rx_buf) {
		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
	} else {
		cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
		ret = dma_submit_error(cookie);
	}
	if (ret) {
		/* need to reset on errors */
		dmaengine_terminate_sync(ctlr->dma_tx);
		bs->tx_dma_active = false;
		goto err_reset_hw;
	}

	/* start rx dma late */
	dma_async_issue_pending(ctlr->dma_rx);
	bs->rx_dma_active = true;
	smp_mb();

	/*
	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
	 * may run before RX DMA is issued.  Terminate RX DMA if so.
	 */
	if (!bs->rx_buf && !bs->tx_dma_active &&
	    cmpxchg(&bs->rx_dma_active, true, false)) {
		dmaengine_terminate_async(ctlr->dma_rx);
		bcm2835_spi_reset_hw(ctlr);
	}

	/* wait for wakeup in framework */
	return 1;

err_reset_hw:
	bcm2835_spi_reset_hw(ctlr);
	bcm2835_spi_undo_prologue(bs);
	return ret;
}

static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
				struct spi_device *spi,
				struct spi_transfer *tfr)
{
	/* we start DMA efforts only on bigger transfers */
	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
		return false;

	/* return OK */
	return true;
}

static void bcm2835_dma_release(struct spi_controller *ctlr,
				struct bcm2835_spi *bs)
{
	int i;

	if (ctlr->dma_tx) {
		dmaengine_terminate_sync(ctlr->dma_tx);

		if (bs->fill_tx_desc)
			dmaengine_desc_free(bs->fill_tx_desc);

		if (bs->fill_tx_addr)
			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
					     bs->fill_tx_addr, sizeof(u32),
					     DMA_TO_DEVICE,
					     DMA_ATTR_SKIP_CPU_SYNC);

		dma_release_channel(ctlr->dma_tx);
		ctlr->dma_tx = NULL;
	}

	if (ctlr->dma_rx) {
		dmaengine_terminate_sync(ctlr->dma_rx);

		for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
			if (bs->clear_rx_desc[i])
				dmaengine_desc_free(bs->clear_rx_desc[i]);

		if (bs->clear_rx_addr)
			dma_unmap_single(ctlr->dma_rx->device->dev,
					 bs->clear_rx_addr,
					 sizeof(bs->clear_rx_cs),
					 DMA_TO_DEVICE);

		dma_release_channel(ctlr->dma_rx);
		ctlr->dma_rx = NULL;
	}
}

static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
			    struct bcm2835_spi *bs)
{
	struct dma_slave_config slave_config;
	const __be32 *addr;
	dma_addr_t dma_reg_base;
	int ret, i;

	/* base address in dma-space */
	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
	if (!addr) {
		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
		/* Fall back to interrupt mode */
		return 0;
	}
	dma_reg_base = be32_to_cpup(addr);

	/* get tx/rx dma */
	ctlr->dma_tx = dma_request_chan(dev, "tx");
	if (IS_ERR(ctlr->dma_tx)) {
		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
		ret = PTR_ERR(ctlr->dma_tx);
		ctlr->dma_tx = NULL;
		goto err;
	}
	ctlr->dma_rx = dma_request_chan(dev, "rx");
	if (IS_ERR(ctlr->dma_rx)) {
		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
		ret = PTR_ERR(ctlr->dma_rx);
		ctlr->dma_rx = NULL;
		goto err_release;
	}

	/*
	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
	 * or, in case of an RX-only transfer, cyclically copies from the zero
	 * page to the FIFO using a preallocated, reusable descriptor.
	 */
	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;

	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
	if (ret)
		goto err_config;

	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
					      ZERO_PAGE(0), 0, sizeof(u32),
					      DMA_TO_DEVICE,
					      DMA_ATTR_SKIP_CPU_SYNC);
	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
		dev_err(dev, "cannot map zero page - not using DMA mode\n");
		bs->fill_tx_addr = 0;
		goto err_release;
	}

	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
						     bs->fill_tx_addr,
						     sizeof(u32), 0,
						     DMA_MEM_TO_DEV, 0);
	if (!bs->fill_tx_desc) {
		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
		goto err_release;
	}

	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
	if (ret) {
		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
		goto err_release;
	}

	/*
	 * The RX DMA channel is used bidirectionally:  It either reads the
	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
	 * precalculated value to the CS register to clear the RX FIFO.
	 */
	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;

	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
	if (ret)
		goto err_config;

	bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
					   bs->clear_rx_cs,
					   sizeof(bs->clear_rx_cs),
					   DMA_TO_DEVICE);
	if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
		dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
		bs->clear_rx_addr = 0;
		goto err_release;
	}

	for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
		bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
					   bs->clear_rx_addr + i * sizeof(u32),
					   sizeof(u32), 0,
					   DMA_MEM_TO_DEV, 0);
		if (!bs->clear_rx_desc[i]) {
			dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
			goto err_release;
		}

		ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
		if (ret) {
			dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
			goto err_release;
		}
	}

	/* all went well, so set can_dma */
	ctlr->can_dma = bcm2835_spi_can_dma;

	return 0;

err_config:
	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
		ret);
err_release:
	bcm2835_dma_release(ctlr, bs);
err:
	/*
	 * Only report error for deferred probing, otherwise fall back to
	 * interrupt mode
	 */
	if (ret != -EPROBE_DEFER)
		ret = 0;

	return ret;
}

static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
					 struct spi_device *spi,
					 struct spi_transfer *tfr,
					 u32 cs)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	unsigned long timeout;

	/* update usage statistics */
	bs->count_transfer_polling++;

	/* enable HW block without interrupts */
	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);

	/* fill in the fifo before timeout calculations
	 * if we are interrupted here, then the data is
	 * getting transferred by the HW while we are interrupted
	 */
	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);

	/* set the timeout to at least 2 jiffies */
	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;

	/* loop until finished the transfer */
	while (bs->rx_len) {
		/* fill in tx fifo with remaining data */
		bcm2835_wr_fifo(bs);

		/* read from fifo as much as possible */
		bcm2835_rd_fifo(bs);

		/* if there is still data pending to read
		 * then check the timeout
		 */
		if (bs->rx_len && time_after(jiffies, timeout)) {
			dev_dbg_ratelimited(&spi->dev,
					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
					    jiffies - timeout,
					    bs->tx_len, bs->rx_len);
			/* fall back to interrupt mode */

			/* update usage statistics */
			bs->count_transfer_irq_after_polling++;

			return bcm2835_spi_transfer_one_irq(ctlr, spi,
							    tfr, cs, false);
		}
	}

	/* Transfer complete - reset SPI HW */
	bcm2835_spi_reset_hw(ctlr);
	/* and return without waiting for completion */
	return 0;
}

static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
				    struct spi_device *spi,
				    struct spi_transfer *tfr)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
	unsigned long hz_per_byte, byte_limit;
	u32 cs = bs->prepare_cs[spi->chip_select];

	/* set clock */
	spi_hz = tfr->speed_hz;
	clk_hz = clk_get_rate(bs->clk);

	if (spi_hz >= clk_hz / 2) {
		cdiv = 2; /* clk_hz/2 is the fastest we can go */
	} else if (spi_hz) {
		/* CDIV must be a multiple of two */
		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
		cdiv += (cdiv % 2);

		if (cdiv >= 65536)
			cdiv = 0; /* 0 is the slowest we can go */
	} else {
		cdiv = 0; /* 0 is the slowest we can go */
	}
	spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);

	/* handle all the 3-wire mode */
	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
		cs |= BCM2835_SPI_CS_REN;

	/* set transmit buffers and length */
	bs->tx_buf = tfr->tx_buf;
	bs->rx_buf = tfr->rx_buf;
	bs->tx_len = tfr->len;
	bs->rx_len = tfr->len;

	/* Calculate the estimated time in us the transfer runs.  Note that
	 * there is 1 idle clocks cycles after each byte getting transferred
	 * so we have 9 cycles/byte.  This is used to find the number of Hz
	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
	 * per 300,000 Hz of bus clock.
	 */
	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
	byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;

	/* run in polling mode for short transfers */
	if (tfr->len < byte_limit)
		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);

	/* run in dma mode if conditions are right
	 * Note that unlike poll or interrupt mode DMA mode does not have
	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
	 */
	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
		return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);

	/* run in interrupt-mode */
	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
}

static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
				       struct spi_message *msg)
{
	struct spi_device *spi = msg->spi;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	int ret;

	if (ctlr->can_dma) {
		/*
		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
		 * aligned) if the limit is exceeded.
		 */
		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
						  GFP_KERNEL | GFP_DMA);
		if (ret)
			return ret;
	}

	/*
	 * Set up clock polarity before spi_transfer_one_message() asserts
	 * chip select to avoid a gratuitous clock signal edge.
	 */
	bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);

	return 0;
}

static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
				   struct spi_message *msg)
{
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	/* if an error occurred and we have an active dma, then terminate */
	dmaengine_terminate_sync(ctlr->dma_tx);
	bs->tx_dma_active = false;
	dmaengine_terminate_sync(ctlr->dma_rx);
	bs->rx_dma_active = false;
	bcm2835_spi_undo_prologue(bs);

	/* and reset */
	bcm2835_spi_reset_hw(ctlr);
}

static int chip_match_name(struct gpio_chip *chip, void *data)
{
	return !strcmp(chip->label, data);
}

static int bcm2835_spi_setup(struct spi_device *spi)
{
	struct spi_controller *ctlr = spi->controller;
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
	struct gpio_chip *chip;
	enum gpio_lookup_flags lflags;
	u32 cs;

	/*
	 * Precalculate SPI slave's CS register value for ->prepare_message():
	 * The driver always uses software-controlled GPIO chip select, hence
	 * set the hardware-controlled native chip select to an invalid value
	 * to prevent it from interfering.
	 */
	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
	if (spi->mode & SPI_CPOL)
		cs |= BCM2835_SPI_CS_CPOL;
	if (spi->mode & SPI_CPHA)
		cs |= BCM2835_SPI_CS_CPHA;
	bs->prepare_cs[spi->chip_select] = cs;

	/*
	 * Precalculate SPI slave's CS register value to clear RX FIFO
	 * in case of a TX-only DMA transfer.
	 */
	if (ctlr->dma_rx) {
		bs->clear_rx_cs[spi->chip_select] = cs |
						    BCM2835_SPI_CS_TA |
						    BCM2835_SPI_CS_DMAEN |
						    BCM2835_SPI_CS_CLEAR_RX;
		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
					   bs->clear_rx_addr,
					   sizeof(bs->clear_rx_cs),
					   DMA_TO_DEVICE);
	}

	/*
	 * sanity checking the native-chipselects
	 */
	if (spi->mode & SPI_NO_CS)
		return 0;
	/*
	 * The SPI core has successfully requested the CS GPIO line from the
	 * device tree, so we are done.
	 */
	if (spi->cs_gpiod)
		return 0;
	if (spi->chip_select > 1) {
		/* error in the case of native CS requested with CS > 1
		 * officially there is a CS2, but it is not documented
		 * which GPIO is connected with that...
		 */
		dev_err(&spi->dev,
			"setup: only two native chip-selects are supported\n");
		return -EINVAL;
	}

	/*
	 * Translate native CS to GPIO
	 *
	 * FIXME: poking around in the gpiolib internals like this is
	 * not very good practice. Find a way to locate the real problem
	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
	 * sometimes not assigned correctly? Erroneous device trees?
	 */

	/* get the gpio chip for the base */
	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
	if (!chip)
		return 0;

	/*
	 * Retrieve the corresponding GPIO line used for CS.
	 * The inversion semantics will be handled by the GPIO core
	 * code, so we pass GPIOD_OUT_LOW for "unasserted" and
	 * the correct flag for inversion semantics. The SPI_CS_HIGH
	 * on spi->mode cannot be checked for polarity in this case
	 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
	 */
	if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
		lflags = GPIO_ACTIVE_HIGH;
	else
		lflags = GPIO_ACTIVE_LOW;
	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
						  DRV_NAME,
						  lflags,
						  GPIOD_OUT_LOW);
	if (IS_ERR(spi->cs_gpiod))
		return PTR_ERR(spi->cs_gpiod);

	/* and set up the "mode" and level */
	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
		 spi->chip_select);

	return 0;
}

static int bcm2835_spi_probe(struct platform_device *pdev)
{
	struct spi_controller *ctlr;
	struct bcm2835_spi *bs;
	int err;

	ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
						  dma_get_cache_alignment()));
	if (!ctlr)
		return -ENOMEM;

	platform_set_drvdata(pdev, ctlr);

	ctlr->use_gpio_descriptors = true;
	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
	ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
	ctlr->setup = bcm2835_spi_setup;
	ctlr->transfer_one = bcm2835_spi_transfer_one;
	ctlr->handle_err = bcm2835_spi_handle_err;
	ctlr->prepare_message = bcm2835_spi_prepare_message;
	ctlr->dev.of_node = pdev->dev.of_node;

	bs = spi_controller_get_devdata(ctlr);

	bs->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(bs->regs)) {
		err = PTR_ERR(bs->regs);
		goto out_controller_put;
	}

	bs->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(bs->clk)) {
		err = PTR_ERR(bs->clk);
		if (err == -EPROBE_DEFER)
			dev_dbg(&pdev->dev, "could not get clk: %d\n", err);
		else
			dev_err(&pdev->dev, "could not get clk: %d\n", err);
		goto out_controller_put;
	}

	bs->irq = platform_get_irq(pdev, 0);
	if (bs->irq <= 0) {
		err = bs->irq ? bs->irq : -ENODEV;
		goto out_controller_put;
	}

	clk_prepare_enable(bs->clk);

	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
	if (err)
		goto out_clk_disable;

	/* initialise the hardware with the default polarities */
	bcm2835_wr(bs, BCM2835_SPI_CS,
		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);

	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
			       dev_name(&pdev->dev), ctlr);
	if (err) {
		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
		goto out_dma_release;
	}

	err = devm_spi_register_controller(&pdev->dev, ctlr);
	if (err) {
		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
			err);
		goto out_dma_release;
	}

	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));

	return 0;

out_dma_release:
	bcm2835_dma_release(ctlr, bs);
out_clk_disable:
	clk_disable_unprepare(bs->clk);
out_controller_put:
	spi_controller_put(ctlr);
	return err;
}

static int bcm2835_spi_remove(struct platform_device *pdev)
{
	struct spi_controller *ctlr = platform_get_drvdata(pdev);
	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);

	bcm2835_debugfs_remove(bs);

	/* Clear FIFOs, and disable the HW block */
	bcm2835_wr(bs, BCM2835_SPI_CS,
		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);

	clk_disable_unprepare(bs->clk);

	bcm2835_dma_release(ctlr, bs);

	return 0;
}

static const struct of_device_id bcm2835_spi_match[] = {
	{ .compatible = "brcm,bcm2835-spi", },
	{}
};
MODULE_DEVICE_TABLE(of, bcm2835_spi_match);

static struct platform_driver bcm2835_spi_driver = {
	.driver		= {
		.name		= DRV_NAME,
		.of_match_table	= bcm2835_spi_match,
	},
	.probe		= bcm2835_spi_probe,
	.remove		= bcm2835_spi_remove,
};
module_platform_driver(bcm2835_spi_driver);

MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
MODULE_LICENSE("GPL");