summaryrefslogtreecommitdiff
path: root/fs/bcachefs/btree_write_buffer.c
blob: 3f56b584f8ec2cd0627ace63166af71f96a942f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
// SPDX-License-Identifier: GPL-2.0

#include "bcachefs.h"
#include "bkey_buf.h"
#include "btree_locking.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_write_buffer.h"
#include "disk_accounting.h"
#include "error.h"
#include "extents.h"
#include "journal.h"
#include "journal_io.h"
#include "journal_reclaim.h"

#include <linux/prefetch.h>
#include <linux/sort.h>

static int bch2_btree_write_buffer_journal_flush(struct journal *,
				struct journal_entry_pin *, u64);

static int bch2_journal_keys_to_write_buffer(struct bch_fs *, struct journal_buf *);

static inline bool __wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
{
	return (cmp_int(l->hi, r->hi) ?:
		cmp_int(l->mi, r->mi) ?:
		cmp_int(l->lo, r->lo)) >= 0;
}

static inline bool wb_key_ref_cmp(const struct wb_key_ref *l, const struct wb_key_ref *r)
{
#ifdef CONFIG_X86_64
	int cmp;

	asm("mov   (%[l]), %%rax;"
	    "sub   (%[r]), %%rax;"
	    "mov  8(%[l]), %%rax;"
	    "sbb  8(%[r]), %%rax;"
	    "mov 16(%[l]), %%rax;"
	    "sbb 16(%[r]), %%rax;"
	    : "=@ccae" (cmp)
	    : [l] "r" (l), [r] "r" (r)
	    : "rax", "cc");

	EBUG_ON(cmp != __wb_key_ref_cmp(l, r));
	return cmp;
#else
	return __wb_key_ref_cmp(l, r);
#endif
}

static int wb_key_seq_cmp(const void *_l, const void *_r)
{
	const struct btree_write_buffered_key *l = _l;
	const struct btree_write_buffered_key *r = _r;

	return cmp_int(l->journal_seq, r->journal_seq);
}

/* Compare excluding idx, the low 24 bits: */
static inline bool wb_key_eq(const void *_l, const void *_r)
{
	const struct wb_key_ref *l = _l;
	const struct wb_key_ref *r = _r;

	return !((l->hi ^ r->hi)|
		 (l->mi ^ r->mi)|
		 ((l->lo >> 24) ^ (r->lo >> 24)));
}

static noinline void wb_sort(struct wb_key_ref *base, size_t num)
{
	size_t n = num, a = num / 2;

	if (!a)		/* num < 2 || size == 0 */
		return;

	for (;;) {
		size_t b, c, d;

		if (a)			/* Building heap: sift down --a */
			--a;
		else if (--n)		/* Sorting: Extract root to --n */
			swap(base[0], base[n]);
		else			/* Sort complete */
			break;

		/*
		 * Sift element at "a" down into heap.  This is the
		 * "bottom-up" variant, which significantly reduces
		 * calls to cmp_func(): we find the sift-down path all
		 * the way to the leaves (one compare per level), then
		 * backtrack to find where to insert the target element.
		 *
		 * Because elements tend to sift down close to the leaves,
		 * this uses fewer compares than doing two per level
		 * on the way down.  (A bit more than half as many on
		 * average, 3/4 worst-case.)
		 */
		for (b = a; c = 2*b + 1, (d = c + 1) < n;)
			b = wb_key_ref_cmp(base + c, base + d) ? c : d;
		if (d == n)		/* Special case last leaf with no sibling */
			b = c;

		/* Now backtrack from "b" to the correct location for "a" */
		while (b != a && wb_key_ref_cmp(base + a, base + b))
			b = (b - 1) / 2;
		c = b;			/* Where "a" belongs */
		while (b != a) {	/* Shift it into place */
			b = (b - 1) / 2;
			swap(base[b], base[c]);
		}
	}
}

static noinline int wb_flush_one_slowpath(struct btree_trans *trans,
					  struct btree_iter *iter,
					  struct btree_write_buffered_key *wb)
{
	struct btree_path *path = btree_iter_path(trans, iter);

	bch2_btree_node_unlock_write(trans, path, path->l[0].b);

	trans->journal_res.seq = wb->journal_seq;

	return bch2_trans_update(trans, iter, &wb->k,
				 BTREE_UPDATE_internal_snapshot_node) ?:
		bch2_trans_commit(trans, NULL, NULL,
				  BCH_TRANS_COMMIT_no_enospc|
				  BCH_TRANS_COMMIT_no_check_rw|
				  BCH_TRANS_COMMIT_no_journal_res|
				  BCH_TRANS_COMMIT_journal_reclaim);
}

static inline int wb_flush_one(struct btree_trans *trans, struct btree_iter *iter,
			       struct btree_write_buffered_key *wb,
			       bool *write_locked,
			       bool *accounting_accumulated,
			       size_t *fast)
{
	struct btree_path *path;
	int ret;

	EBUG_ON(!wb->journal_seq);
	EBUG_ON(!trans->c->btree_write_buffer.flushing.pin.seq);
	EBUG_ON(trans->c->btree_write_buffer.flushing.pin.seq > wb->journal_seq);

	ret = bch2_btree_iter_traverse(iter);
	if (ret)
		return ret;

	if (!*accounting_accumulated && wb->k.k.type == KEY_TYPE_accounting) {
		struct bkey u;
		struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, iter), &u);

		if (k.k->type == KEY_TYPE_accounting)
			bch2_accounting_accumulate(bkey_i_to_accounting(&wb->k),
						   bkey_s_c_to_accounting(k));
	}
	*accounting_accumulated = true;

	/*
	 * We can't clone a path that has write locks: unshare it now, before
	 * set_pos and traverse():
	 */
	if (btree_iter_path(trans, iter)->ref > 1)
		iter->path = __bch2_btree_path_make_mut(trans, iter->path, true, _THIS_IP_);

	path = btree_iter_path(trans, iter);

	if (!*write_locked) {
		ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
		if (ret)
			return ret;

		bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
		*write_locked = true;
	}

	if (unlikely(!bch2_btree_node_insert_fits(path->l[0].b, wb->k.k.u64s))) {
		*write_locked = false;
		return wb_flush_one_slowpath(trans, iter, wb);
	}

	bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
	(*fast)++;
	return 0;
}

/*
 * Update a btree with a write buffered key using the journal seq of the
 * original write buffer insert.
 *
 * It is not safe to rejournal the key once it has been inserted into the write
 * buffer because that may break recovery ordering. For example, the key may
 * have already been modified in the active write buffer in a seq that comes
 * before the current transaction. If we were to journal this key again and
 * crash, recovery would process updates in the wrong order.
 */
static int
btree_write_buffered_insert(struct btree_trans *trans,
			  struct btree_write_buffered_key *wb)
{
	struct btree_iter iter;
	int ret;

	bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
			     BTREE_ITER_cached|BTREE_ITER_intent);

	trans->journal_res.seq = wb->journal_seq;

	ret   = bch2_btree_iter_traverse(&iter) ?:
		bch2_trans_update(trans, &iter, &wb->k,
				  BTREE_UPDATE_internal_snapshot_node);
	bch2_trans_iter_exit(trans, &iter);
	return ret;
}

static void move_keys_from_inc_to_flushing(struct btree_write_buffer *wb)
{
	struct bch_fs *c = container_of(wb, struct bch_fs, btree_write_buffer);
	struct journal *j = &c->journal;

	if (!wb->inc.keys.nr)
		return;

	bch2_journal_pin_add(j, wb->inc.keys.data[0].journal_seq, &wb->flushing.pin,
			     bch2_btree_write_buffer_journal_flush);

	darray_resize(&wb->flushing.keys, min_t(size_t, 1U << 20, wb->flushing.keys.nr + wb->inc.keys.nr));
	darray_resize(&wb->sorted, wb->flushing.keys.size);

	if (!wb->flushing.keys.nr && wb->sorted.size >= wb->inc.keys.nr) {
		swap(wb->flushing.keys, wb->inc.keys);
		goto out;
	}

	size_t nr = min(darray_room(wb->flushing.keys),
			wb->sorted.size - wb->flushing.keys.nr);
	nr = min(nr, wb->inc.keys.nr);

	memcpy(&darray_top(wb->flushing.keys),
	       wb->inc.keys.data,
	       sizeof(wb->inc.keys.data[0]) * nr);

	memmove(wb->inc.keys.data,
		wb->inc.keys.data + nr,
	       sizeof(wb->inc.keys.data[0]) * (wb->inc.keys.nr - nr));

	wb->flushing.keys.nr	+= nr;
	wb->inc.keys.nr		-= nr;
out:
	if (!wb->inc.keys.nr)
		bch2_journal_pin_drop(j, &wb->inc.pin);
	else
		bch2_journal_pin_update(j, wb->inc.keys.data[0].journal_seq, &wb->inc.pin,
					bch2_btree_write_buffer_journal_flush);

	if (j->watermark) {
		spin_lock(&j->lock);
		bch2_journal_set_watermark(j);
		spin_unlock(&j->lock);
	}

	BUG_ON(wb->sorted.size < wb->flushing.keys.nr);
}

static int bch2_btree_write_buffer_flush_locked(struct btree_trans *trans)
{
	struct bch_fs *c = trans->c;
	struct journal *j = &c->journal;
	struct btree_write_buffer *wb = &c->btree_write_buffer;
	struct btree_iter iter = { NULL };
	size_t overwritten = 0, fast = 0, slowpath = 0, could_not_insert = 0;
	bool write_locked = false;
	bool accounting_replay_done = test_bit(BCH_FS_accounting_replay_done, &c->flags);
	int ret = 0;

	bch2_trans_unlock(trans);
	bch2_trans_begin(trans);

	mutex_lock(&wb->inc.lock);
	move_keys_from_inc_to_flushing(wb);
	mutex_unlock(&wb->inc.lock);

	for (size_t i = 0; i < wb->flushing.keys.nr; i++) {
		wb->sorted.data[i].idx = i;
		wb->sorted.data[i].btree = wb->flushing.keys.data[i].btree;
		memcpy(&wb->sorted.data[i].pos, &wb->flushing.keys.data[i].k.k.p, sizeof(struct bpos));
	}
	wb->sorted.nr = wb->flushing.keys.nr;

	/*
	 * We first sort so that we can detect and skip redundant updates, and
	 * then we attempt to flush in sorted btree order, as this is most
	 * efficient.
	 *
	 * However, since we're not flushing in the order they appear in the
	 * journal we won't be able to drop our journal pin until everything is
	 * flushed - which means this could deadlock the journal if we weren't
	 * passing BCH_TRANS_COMMIT_journal_reclaim. This causes the update to fail
	 * if it would block taking a journal reservation.
	 *
	 * If that happens, simply skip the key so we can optimistically insert
	 * as many keys as possible in the fast path.
	 */
	wb_sort(wb->sorted.data, wb->sorted.nr);

	darray_for_each(wb->sorted, i) {
		struct btree_write_buffered_key *k = &wb->flushing.keys.data[i->idx];

		for (struct wb_key_ref *n = i + 1; n < min(i + 4, &darray_top(wb->sorted)); n++)
			prefetch(&wb->flushing.keys.data[n->idx]);

		BUG_ON(!k->journal_seq);

		if (!accounting_replay_done &&
		    k->k.k.type == KEY_TYPE_accounting) {
			slowpath++;
			continue;
		}

		if (i + 1 < &darray_top(wb->sorted) &&
		    wb_key_eq(i, i + 1)) {
			struct btree_write_buffered_key *n = &wb->flushing.keys.data[i[1].idx];

			if (k->k.k.type == KEY_TYPE_accounting &&
			    n->k.k.type == KEY_TYPE_accounting)
				bch2_accounting_accumulate(bkey_i_to_accounting(&n->k),
							   bkey_i_to_s_c_accounting(&k->k));

			overwritten++;
			n->journal_seq = min_t(u64, n->journal_seq, k->journal_seq);
			k->journal_seq = 0;
			continue;
		}

		if (write_locked) {
			struct btree_path *path = btree_iter_path(trans, &iter);

			if (path->btree_id != i->btree ||
			    bpos_gt(k->k.k.p, path->l[0].b->key.k.p)) {
				bch2_btree_node_unlock_write(trans, path, path->l[0].b);
				write_locked = false;

				ret = lockrestart_do(trans,
					bch2_btree_iter_traverse(&iter) ?:
					bch2_foreground_maybe_merge(trans, iter.path, 0,
							BCH_WATERMARK_reclaim|
							BCH_TRANS_COMMIT_journal_reclaim|
							BCH_TRANS_COMMIT_no_check_rw|
							BCH_TRANS_COMMIT_no_enospc));
				if (ret)
					goto err;
			}
		}

		if (!iter.path || iter.btree_id != k->btree) {
			bch2_trans_iter_exit(trans, &iter);
			bch2_trans_iter_init(trans, &iter, k->btree, k->k.k.p,
					     BTREE_ITER_intent|BTREE_ITER_all_snapshots);
		}

		bch2_btree_iter_set_pos(&iter, k->k.k.p);
		btree_iter_path(trans, &iter)->preserve = false;

		bool accounting_accumulated = false;
		do {
			if (race_fault()) {
				ret = -BCH_ERR_journal_reclaim_would_deadlock;
				break;
			}

			ret = wb_flush_one(trans, &iter, k, &write_locked,
					   &accounting_accumulated, &fast);
			if (!write_locked)
				bch2_trans_begin(trans);
		} while (bch2_err_matches(ret, BCH_ERR_transaction_restart));

		if (!ret) {
			k->journal_seq = 0;
		} else if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
			slowpath++;
			ret = 0;
		} else
			break;
	}

	if (write_locked) {
		struct btree_path *path = btree_iter_path(trans, &iter);
		bch2_btree_node_unlock_write(trans, path, path->l[0].b);
	}
	bch2_trans_iter_exit(trans, &iter);

	if (ret)
		goto err;

	if (slowpath) {
		/*
		 * Flush in the order they were present in the journal, so that
		 * we can release journal pins:
		 * The fastpath zapped the seq of keys that were successfully flushed so
		 * we can skip those here.
		 */
		trace_and_count(c, write_buffer_flush_slowpath, trans, slowpath, wb->flushing.keys.nr);

		sort(wb->flushing.keys.data,
		     wb->flushing.keys.nr,
		     sizeof(wb->flushing.keys.data[0]),
		     wb_key_seq_cmp, NULL);

		darray_for_each(wb->flushing.keys, i) {
			if (!i->journal_seq)
				continue;

			if (!accounting_replay_done &&
			    i->k.k.type == KEY_TYPE_accounting) {
				could_not_insert++;
				continue;
			}

			if (!could_not_insert)
				bch2_journal_pin_update(j, i->journal_seq, &wb->flushing.pin,
							bch2_btree_write_buffer_journal_flush);

			bch2_trans_begin(trans);

			ret = commit_do(trans, NULL, NULL,
					BCH_WATERMARK_reclaim|
					BCH_TRANS_COMMIT_journal_reclaim|
					BCH_TRANS_COMMIT_no_check_rw|
					BCH_TRANS_COMMIT_no_enospc|
					BCH_TRANS_COMMIT_no_journal_res ,
					btree_write_buffered_insert(trans, i));
			if (ret)
				goto err;

			i->journal_seq = 0;
		}

		/*
		 * If journal replay hasn't finished with accounting keys we
		 * can't flush accounting keys at all - condense them and leave
		 * them for next time.
		 *
		 * Q: Can the write buffer overflow?
		 * A Shouldn't be any actual risk. It's just new accounting
		 * updates that the write buffer can't flush, and those are only
		 * going to be generated by interior btree node updates as
		 * journal replay has to split/rewrite nodes to make room for
		 * its updates.
		 *
		 * And for those new acounting updates, updates to the same
		 * counters get accumulated as they're flushed from the journal
		 * to the write buffer - see the patch for eytzingcer tree
		 * accumulated. So we could only overflow if the number of
		 * distinct counters touched somehow was very large.
		 */
		if (could_not_insert) {
			struct btree_write_buffered_key *dst = wb->flushing.keys.data;

			darray_for_each(wb->flushing.keys, i)
				if (i->journal_seq)
					*dst++ = *i;
			wb->flushing.keys.nr = dst - wb->flushing.keys.data;
		}
	}
err:
	if (ret || !could_not_insert) {
		bch2_journal_pin_drop(j, &wb->flushing.pin);
		wb->flushing.keys.nr = 0;
	}

	bch2_fs_fatal_err_on(ret, c, "%s", bch2_err_str(ret));
	trace_write_buffer_flush(trans, wb->flushing.keys.nr, overwritten, fast, 0);
	return ret;
}

static int fetch_wb_keys_from_journal(struct bch_fs *c, u64 seq)
{
	struct journal *j = &c->journal;
	struct journal_buf *buf;
	int ret = 0;

	while (!ret && (buf = bch2_next_write_buffer_flush_journal_buf(j, seq))) {
		ret = bch2_journal_keys_to_write_buffer(c, buf);
		mutex_unlock(&j->buf_lock);
	}

	return ret;
}

static int btree_write_buffer_flush_seq(struct btree_trans *trans, u64 seq)
{
	struct bch_fs *c = trans->c;
	struct btree_write_buffer *wb = &c->btree_write_buffer;
	int ret = 0, fetch_from_journal_err;

	do {
		bch2_trans_unlock(trans);

		fetch_from_journal_err = fetch_wb_keys_from_journal(c, seq);

		/*
		 * On memory allocation failure, bch2_btree_write_buffer_flush_locked()
		 * is not guaranteed to empty wb->inc:
		 */
		mutex_lock(&wb->flushing.lock);
		ret = bch2_btree_write_buffer_flush_locked(trans);
		mutex_unlock(&wb->flushing.lock);
	} while (!ret &&
		 (fetch_from_journal_err ||
		  (wb->inc.pin.seq && wb->inc.pin.seq <= seq) ||
		  (wb->flushing.pin.seq && wb->flushing.pin.seq <= seq)));

	return ret;
}

static int bch2_btree_write_buffer_journal_flush(struct journal *j,
				struct journal_entry_pin *_pin, u64 seq)
{
	struct bch_fs *c = container_of(j, struct bch_fs, journal);

	return bch2_trans_run(c, btree_write_buffer_flush_seq(trans, seq));
}

int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
{
	struct bch_fs *c = trans->c;

	trace_and_count(c, write_buffer_flush_sync, trans, _RET_IP_);

	return btree_write_buffer_flush_seq(trans, journal_cur_seq(&c->journal));
}

int bch2_btree_write_buffer_flush_nocheck_rw(struct btree_trans *trans)
{
	struct bch_fs *c = trans->c;
	struct btree_write_buffer *wb = &c->btree_write_buffer;
	int ret = 0;

	if (mutex_trylock(&wb->flushing.lock)) {
		ret = bch2_btree_write_buffer_flush_locked(trans);
		mutex_unlock(&wb->flushing.lock);
	}

	return ret;
}

int bch2_btree_write_buffer_tryflush(struct btree_trans *trans)
{
	struct bch_fs *c = trans->c;

	if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer))
		return -BCH_ERR_erofs_no_writes;

	int ret = bch2_btree_write_buffer_flush_nocheck_rw(trans);
	bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
	return ret;
}

/*
 * In check and repair code, when checking references to write buffer btrees we
 * need to issue a flush before we have a definitive error: this issues a flush
 * if this is a key we haven't yet checked.
 */
int bch2_btree_write_buffer_maybe_flush(struct btree_trans *trans,
					struct bkey_s_c referring_k,
					struct bkey_buf *last_flushed)
{
	struct bch_fs *c = trans->c;
	struct bkey_buf tmp;
	int ret = 0;

	bch2_bkey_buf_init(&tmp);

	if (!bkey_and_val_eq(referring_k, bkey_i_to_s_c(last_flushed->k))) {
		bch2_bkey_buf_reassemble(&tmp, c, referring_k);

		if (bkey_is_btree_ptr(referring_k.k)) {
			bch2_trans_unlock(trans);
			bch2_btree_interior_updates_flush(c);
		}

		ret = bch2_btree_write_buffer_flush_sync(trans);
		if (ret)
			goto err;

		bch2_bkey_buf_copy(last_flushed, c, tmp.k);
		ret = -BCH_ERR_transaction_restart_write_buffer_flush;
	}
err:
	bch2_bkey_buf_exit(&tmp, c);
	return ret;
}

static void bch2_btree_write_buffer_flush_work(struct work_struct *work)
{
	struct bch_fs *c = container_of(work, struct bch_fs, btree_write_buffer.flush_work);
	struct btree_write_buffer *wb = &c->btree_write_buffer;
	int ret;

	mutex_lock(&wb->flushing.lock);
	do {
		ret = bch2_trans_run(c, bch2_btree_write_buffer_flush_locked(trans));
	} while (!ret && bch2_btree_write_buffer_should_flush(c));
	mutex_unlock(&wb->flushing.lock);

	bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);
}

static void wb_accounting_sort(struct btree_write_buffer *wb)
{
	eytzinger0_sort(wb->accounting.data, wb->accounting.nr,
			sizeof(wb->accounting.data[0]),
			wb_key_cmp, NULL);
}

int bch2_accounting_key_to_wb_slowpath(struct bch_fs *c, enum btree_id btree,
				       struct bkey_i_accounting *k)
{
	struct btree_write_buffer *wb = &c->btree_write_buffer;
	struct btree_write_buffered_key new = { .btree = btree };

	bkey_copy(&new.k, &k->k_i);

	int ret = darray_push(&wb->accounting, new);
	if (ret)
		return ret;

	wb_accounting_sort(wb);
	return 0;
}

int bch2_journal_key_to_wb_slowpath(struct bch_fs *c,
			     struct journal_keys_to_wb *dst,
			     enum btree_id btree, struct bkey_i *k)
{
	struct btree_write_buffer *wb = &c->btree_write_buffer;
	int ret;
retry:
	ret = darray_make_room_gfp(&dst->wb->keys, 1, GFP_KERNEL);
	if (!ret && dst->wb == &wb->flushing)
		ret = darray_resize(&wb->sorted, wb->flushing.keys.size);

	if (unlikely(ret)) {
		if (dst->wb == &c->btree_write_buffer.flushing) {
			mutex_unlock(&dst->wb->lock);
			dst->wb = &c->btree_write_buffer.inc;
			bch2_journal_pin_add(&c->journal, dst->seq, &dst->wb->pin,
					     bch2_btree_write_buffer_journal_flush);
			goto retry;
		}

		return ret;
	}

	dst->room = darray_room(dst->wb->keys);
	if (dst->wb == &wb->flushing)
		dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
	BUG_ON(!dst->room);
	BUG_ON(!dst->seq);

	struct btree_write_buffered_key *wb_k = &darray_top(dst->wb->keys);
	wb_k->journal_seq	= dst->seq;
	wb_k->btree		= btree;
	bkey_copy(&wb_k->k, k);
	dst->wb->keys.nr++;
	dst->room--;
	return 0;
}

void bch2_journal_keys_to_write_buffer_start(struct bch_fs *c, struct journal_keys_to_wb *dst, u64 seq)
{
	struct btree_write_buffer *wb = &c->btree_write_buffer;

	if (mutex_trylock(&wb->flushing.lock)) {
		mutex_lock(&wb->inc.lock);
		move_keys_from_inc_to_flushing(wb);

		/*
		 * Attempt to skip wb->inc, and add keys directly to
		 * wb->flushing, saving us a copy later:
		 */

		if (!wb->inc.keys.nr) {
			dst->wb = &wb->flushing;
		} else {
			mutex_unlock(&wb->flushing.lock);
			dst->wb = &wb->inc;
		}
	} else {
		mutex_lock(&wb->inc.lock);
		dst->wb = &wb->inc;
	}

	dst->room = darray_room(dst->wb->keys);
	if (dst->wb == &wb->flushing)
		dst->room = min(dst->room, wb->sorted.size - wb->flushing.keys.nr);
	dst->seq = seq;

	bch2_journal_pin_add(&c->journal, seq, &dst->wb->pin,
			     bch2_btree_write_buffer_journal_flush);

	darray_for_each(wb->accounting, i)
		memset(&i->k.v, 0, bkey_val_bytes(&i->k.k));
}

int bch2_journal_keys_to_write_buffer_end(struct bch_fs *c, struct journal_keys_to_wb *dst)
{
	struct btree_write_buffer *wb = &c->btree_write_buffer;
	unsigned live_accounting_keys = 0;
	int ret = 0;

	darray_for_each(wb->accounting, i)
		if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&i->k))) {
			i->journal_seq = dst->seq;
			live_accounting_keys++;
			ret = __bch2_journal_key_to_wb(c, dst, i->btree, &i->k);
			if (ret)
				break;
		}

	if (live_accounting_keys * 2 < wb->accounting.nr) {
		struct btree_write_buffered_key *dst = wb->accounting.data;

		darray_for_each(wb->accounting, src)
			if (!bch2_accounting_key_is_zero(bkey_i_to_s_c_accounting(&src->k)))
				*dst++ = *src;
		wb->accounting.nr = dst - wb->accounting.data;
		wb_accounting_sort(wb);
	}

	if (!dst->wb->keys.nr)
		bch2_journal_pin_drop(&c->journal, &dst->wb->pin);

	if (bch2_btree_write_buffer_should_flush(c) &&
	    __bch2_write_ref_tryget(c, BCH_WRITE_REF_btree_write_buffer) &&
	    !queue_work(system_unbound_wq, &c->btree_write_buffer.flush_work))
		bch2_write_ref_put(c, BCH_WRITE_REF_btree_write_buffer);

	if (dst->wb == &wb->flushing)
		mutex_unlock(&wb->flushing.lock);
	mutex_unlock(&wb->inc.lock);

	return ret;
}

static int bch2_journal_keys_to_write_buffer(struct bch_fs *c, struct journal_buf *buf)
{
	struct journal_keys_to_wb dst;
	int ret = 0;

	bch2_journal_keys_to_write_buffer_start(c, &dst, le64_to_cpu(buf->data->seq));

	for_each_jset_entry_type(entry, buf->data, BCH_JSET_ENTRY_write_buffer_keys) {
		jset_entry_for_each_key(entry, k) {
			ret = bch2_journal_key_to_wb(c, &dst, entry->btree_id, k);
			if (ret)
				goto out;
		}

		entry->type = BCH_JSET_ENTRY_btree_keys;
	}

	spin_lock(&c->journal.lock);
	buf->need_flush_to_write_buffer = false;
	spin_unlock(&c->journal.lock);
out:
	ret = bch2_journal_keys_to_write_buffer_end(c, &dst) ?: ret;
	return ret;
}

static int wb_keys_resize(struct btree_write_buffer_keys *wb, size_t new_size)
{
	if (wb->keys.size >= new_size)
		return 0;

	if (!mutex_trylock(&wb->lock))
		return -EINTR;

	int ret = darray_resize(&wb->keys, new_size);
	mutex_unlock(&wb->lock);
	return ret;
}

int bch2_btree_write_buffer_resize(struct bch_fs *c, size_t new_size)
{
	struct btree_write_buffer *wb = &c->btree_write_buffer;

	return wb_keys_resize(&wb->flushing, new_size) ?:
		wb_keys_resize(&wb->inc, new_size);
}

void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
{
	struct btree_write_buffer *wb = &c->btree_write_buffer;

	BUG_ON((wb->inc.keys.nr || wb->flushing.keys.nr) &&
	       !bch2_journal_error(&c->journal));

	darray_exit(&wb->accounting);
	darray_exit(&wb->sorted);
	darray_exit(&wb->flushing.keys);
	darray_exit(&wb->inc.keys);
}

int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
{
	struct btree_write_buffer *wb = &c->btree_write_buffer;

	mutex_init(&wb->inc.lock);
	mutex_init(&wb->flushing.lock);
	INIT_WORK(&wb->flush_work, bch2_btree_write_buffer_flush_work);

	/* Will be resized by journal as needed: */
	unsigned initial_size = 1 << 16;

	return  darray_make_room(&wb->inc.keys, initial_size) ?:
		darray_make_room(&wb->flushing.keys, initial_size) ?:
		darray_make_room(&wb->sorted, initial_size);
}