1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
// SPDX-License-Identifier: GPL-2.0-or-later
/* Direct I/O support.
*
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/uio.h>
#include <linux/sched/mm.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/netfs.h>
#include "internal.h"
static void netfs_prepare_dio_read_iterator(struct netfs_io_subrequest *subreq)
{
struct netfs_io_request *rreq = subreq->rreq;
size_t rsize;
rsize = umin(subreq->len, rreq->io_streams[0].sreq_max_len);
subreq->len = rsize;
if (unlikely(rreq->io_streams[0].sreq_max_segs)) {
size_t limit = netfs_limit_iter(&rreq->iter, 0, rsize,
rreq->io_streams[0].sreq_max_segs);
if (limit < rsize) {
subreq->len = limit;
trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
}
}
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
subreq->io_iter = rreq->iter;
iov_iter_truncate(&subreq->io_iter, subreq->len);
iov_iter_advance(&rreq->iter, subreq->len);
}
/*
* Perform a read to a buffer from the server, slicing up the region to be read
* according to the network rsize.
*/
static int netfs_dispatch_unbuffered_reads(struct netfs_io_request *rreq)
{
unsigned long long start = rreq->start;
ssize_t size = rreq->len;
int ret = 0;
atomic_set(&rreq->nr_outstanding, 1);
do {
struct netfs_io_subrequest *subreq;
ssize_t slice;
subreq = netfs_alloc_subrequest(rreq);
if (!subreq) {
ret = -ENOMEM;
break;
}
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
subreq->start = start;
subreq->len = size;
atomic_inc(&rreq->nr_outstanding);
spin_lock_bh(&rreq->lock);
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
subreq->prev_donated = rreq->prev_donated;
rreq->prev_donated = 0;
trace_netfs_sreq(subreq, netfs_sreq_trace_added);
spin_unlock_bh(&rreq->lock);
netfs_stat(&netfs_n_rh_download);
if (rreq->netfs_ops->prepare_read) {
ret = rreq->netfs_ops->prepare_read(subreq);
if (ret < 0) {
atomic_dec(&rreq->nr_outstanding);
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_cancel);
break;
}
}
netfs_prepare_dio_read_iterator(subreq);
slice = subreq->len;
rreq->netfs_ops->issue_read(subreq);
size -= slice;
start += slice;
rreq->submitted += slice;
if (test_bit(NETFS_RREQ_BLOCKED, &rreq->flags) &&
test_bit(NETFS_RREQ_NONBLOCK, &rreq->flags))
break;
cond_resched();
} while (size > 0);
if (atomic_dec_and_test(&rreq->nr_outstanding))
netfs_rreq_terminated(rreq, false);
return ret;
}
/*
* Perform a read to an application buffer, bypassing the pagecache and the
* local disk cache.
*/
static int netfs_unbuffered_read(struct netfs_io_request *rreq, bool sync)
{
int ret;
_enter("R=%x %llx-%llx",
rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
if (rreq->len == 0) {
pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
return -EIO;
}
// TODO: Use bounce buffer if requested
inode_dio_begin(rreq->inode);
ret = netfs_dispatch_unbuffered_reads(rreq);
if (!rreq->submitted) {
netfs_put_request(rreq, false, netfs_rreq_trace_put_no_submit);
inode_dio_end(rreq->inode);
ret = 0;
goto out;
}
if (sync) {
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip);
wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS,
TASK_UNINTERRUPTIBLE);
ret = rreq->error;
if (ret == 0 && rreq->submitted < rreq->len &&
rreq->origin != NETFS_DIO_READ) {
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
ret = -EIO;
}
} else {
ret = -EIOCBQUEUED;
}
out:
_leave(" = %d", ret);
return ret;
}
/**
* netfs_unbuffered_read_iter_locked - Perform an unbuffered or direct I/O read
* @iocb: The I/O control descriptor describing the read
* @iter: The output buffer (also specifies read length)
*
* Perform an unbuffered I/O or direct I/O from the file in @iocb to the
* output buffer. No use is made of the pagecache.
*
* The caller must hold any appropriate locks.
*/
ssize_t netfs_unbuffered_read_iter_locked(struct kiocb *iocb, struct iov_iter *iter)
{
struct netfs_io_request *rreq;
ssize_t ret;
size_t orig_count = iov_iter_count(iter);
bool sync = is_sync_kiocb(iocb);
_enter("");
if (!orig_count)
return 0; /* Don't update atime */
ret = kiocb_write_and_wait(iocb, orig_count);
if (ret < 0)
return ret;
file_accessed(iocb->ki_filp);
rreq = netfs_alloc_request(iocb->ki_filp->f_mapping, iocb->ki_filp,
iocb->ki_pos, orig_count,
NETFS_DIO_READ);
if (IS_ERR(rreq))
return PTR_ERR(rreq);
netfs_stat(&netfs_n_rh_dio_read);
trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_dio_read);
/* If this is an async op, we have to keep track of the destination
* buffer for ourselves as the caller's iterator will be trashed when
* we return.
*
* In such a case, extract an iterator to represent as much of the the
* output buffer as we can manage. Note that the extraction might not
* be able to allocate a sufficiently large bvec array and may shorten
* the request.
*/
if (user_backed_iter(iter)) {
ret = netfs_extract_user_iter(iter, rreq->len, &rreq->iter, 0);
if (ret < 0)
goto out;
rreq->direct_bv = (struct bio_vec *)rreq->iter.bvec;
rreq->direct_bv_count = ret;
rreq->direct_bv_unpin = iov_iter_extract_will_pin(iter);
rreq->len = iov_iter_count(&rreq->iter);
} else {
rreq->iter = *iter;
rreq->len = orig_count;
rreq->direct_bv_unpin = false;
iov_iter_advance(iter, orig_count);
}
// TODO: Set up bounce buffer if needed
if (!sync)
rreq->iocb = iocb;
ret = netfs_unbuffered_read(rreq, sync);
if (ret < 0)
goto out; /* May be -EIOCBQUEUED */
if (sync) {
// TODO: Copy from bounce buffer
iocb->ki_pos += rreq->transferred;
ret = rreq->transferred;
}
out:
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
if (ret > 0)
orig_count -= ret;
return ret;
}
EXPORT_SYMBOL(netfs_unbuffered_read_iter_locked);
/**
* netfs_unbuffered_read_iter - Perform an unbuffered or direct I/O read
* @iocb: The I/O control descriptor describing the read
* @iter: The output buffer (also specifies read length)
*
* Perform an unbuffered I/O or direct I/O from the file in @iocb to the
* output buffer. No use is made of the pagecache.
*/
ssize_t netfs_unbuffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
struct inode *inode = file_inode(iocb->ki_filp);
ssize_t ret;
if (!iter->count)
return 0; /* Don't update atime */
ret = netfs_start_io_direct(inode);
if (ret == 0) {
ret = netfs_unbuffered_read_iter_locked(iocb, iter);
netfs_end_io_direct(inode);
}
return ret;
}
EXPORT_SYMBOL(netfs_unbuffered_read_iter);
|