summaryrefslogtreecommitdiff
path: root/fs/netfs/read_collect.c
blob: 3cbb289535a85ad79a30e0425cc049465c5c8d47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
// SPDX-License-Identifier: GPL-2.0-only
/* Network filesystem read subrequest result collection, assessment and
 * retrying.
 *
 * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 */

#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/task_io_accounting_ops.h>
#include "internal.h"

/*
 * Clear the unread part of an I/O request.
 */
static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
{
	netfs_reset_iter(subreq);
	WARN_ON_ONCE(subreq->len - subreq->transferred != iov_iter_count(&subreq->io_iter));
	iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
	if (subreq->start + subreq->transferred >= subreq->rreq->i_size)
		__set_bit(NETFS_SREQ_HIT_EOF, &subreq->flags);
}

/*
 * Flush, mark and unlock a folio that's now completely read.  If we want to
 * cache the folio, we set the group to NETFS_FOLIO_COPY_TO_CACHE, mark it
 * dirty and let writeback handle it.
 */
static void netfs_unlock_read_folio(struct netfs_io_subrequest *subreq,
				    struct netfs_io_request *rreq,
				    struct folio_queue *folioq,
				    int slot)
{
	struct netfs_folio *finfo;
	struct folio *folio = folioq_folio(folioq, slot);

	flush_dcache_folio(folio);
	folio_mark_uptodate(folio);

	if (!test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) {
		finfo = netfs_folio_info(folio);
		if (finfo) {
			trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
			if (finfo->netfs_group)
				folio_change_private(folio, finfo->netfs_group);
			else
				folio_detach_private(folio);
			kfree(finfo);
		}

		if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
			if (!WARN_ON_ONCE(folio_get_private(folio) != NULL)) {
				trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
				folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE);
				folio_mark_dirty(folio);
			}
		} else {
			trace_netfs_folio(folio, netfs_folio_trace_read_done);
		}
	} else {
		// TODO: Use of PG_private_2 is deprecated.
		if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
			netfs_pgpriv2_mark_copy_to_cache(subreq, rreq, folioq, slot);
	}

	if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
		if (folio->index == rreq->no_unlock_folio &&
		    test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags)) {
			_debug("no unlock");
		} else {
			trace_netfs_folio(folio, netfs_folio_trace_read_unlock);
			folio_unlock(folio);
		}
	}

	folioq_clear(folioq, slot);
}

/*
 * Unlock any folios that are now completely read.  Returns true if the
 * subrequest is removed from the list.
 */
static bool netfs_consume_read_data(struct netfs_io_subrequest *subreq, bool was_async)
{
	struct netfs_io_subrequest *prev, *next;
	struct netfs_io_request *rreq = subreq->rreq;
	struct folio_queue *folioq = subreq->curr_folioq;
	size_t avail, prev_donated, next_donated, fsize, part, excess;
	loff_t fpos, start;
	loff_t fend;
	int slot = subreq->curr_folioq_slot;

	if (WARN(subreq->transferred > subreq->len,
		 "Subreq overread: R%x[%x] %zu > %zu",
		 rreq->debug_id, subreq->debug_index,
		 subreq->transferred, subreq->len))
		subreq->transferred = subreq->len;

next_folio:
	fsize = PAGE_SIZE << subreq->curr_folio_order;
	fpos = round_down(subreq->start + subreq->consumed, fsize);
	fend = fpos + fsize;

	if (WARN_ON_ONCE(!folioq) ||
	    WARN_ON_ONCE(!folioq_folio(folioq, slot)) ||
	    WARN_ON_ONCE(folioq_folio(folioq, slot)->index != fpos / PAGE_SIZE)) {
		pr_err("R=%08x[%x] s=%llx-%llx ctl=%zx/%zx/%zx sl=%u\n",
		       rreq->debug_id, subreq->debug_index,
		       subreq->start, subreq->start + subreq->transferred - 1,
		       subreq->consumed, subreq->transferred, subreq->len,
		       slot);
		if (folioq) {
			struct folio *folio = folioq_folio(folioq, slot);

			pr_err("folioq: orders=%02x%02x%02x%02x\n",
			       folioq->orders[0], folioq->orders[1],
			       folioq->orders[2], folioq->orders[3]);
			if (folio)
				pr_err("folio: %llx-%llx ix=%llx o=%u qo=%u\n",
				       fpos, fend - 1, folio_pos(folio), folio_order(folio),
				       folioq_folio_order(folioq, slot));
		}
	}

donation_changed:
	/* Try to consume the current folio if we've hit or passed the end of
	 * it.  There's a possibility that this subreq doesn't start at the
	 * beginning of the folio, in which case we need to donate to/from the
	 * preceding subreq.
	 *
	 * We also need to include any potential donation back from the
	 * following subreq.
	 */
	prev_donated = READ_ONCE(subreq->prev_donated);
	next_donated =  READ_ONCE(subreq->next_donated);
	if (prev_donated || next_donated) {
		spin_lock_bh(&rreq->lock);
		prev_donated = subreq->prev_donated;
		next_donated =  subreq->next_donated;
		subreq->start -= prev_donated;
		subreq->len += prev_donated;
		subreq->transferred += prev_donated;
		prev_donated = subreq->prev_donated = 0;
		if (subreq->transferred == subreq->len) {
			subreq->len += next_donated;
			subreq->transferred += next_donated;
			next_donated = subreq->next_donated = 0;
		}
		trace_netfs_sreq(subreq, netfs_sreq_trace_add_donations);
		spin_unlock_bh(&rreq->lock);
	}

	avail = subreq->transferred;
	if (avail == subreq->len)
		avail += next_donated;
	start = subreq->start;
	if (subreq->consumed == 0) {
		start -= prev_donated;
		avail += prev_donated;
	} else {
		start += subreq->consumed;
		avail -= subreq->consumed;
	}
	part = umin(avail, fsize);

	trace_netfs_progress(subreq, start, avail, part);

	if (start + avail >= fend) {
		if (fpos == start) {
			/* Flush, unlock and mark for caching any folio we've just read. */
			subreq->consumed = fend - subreq->start;
			netfs_unlock_read_folio(subreq, rreq, folioq, slot);
			folioq_mark2(folioq, slot);
			if (subreq->consumed >= subreq->len)
				goto remove_subreq;
		} else if (fpos < start) {
			excess = fend - subreq->start;

			spin_lock_bh(&rreq->lock);
			/* If we complete first on a folio split with the
			 * preceding subreq, donate to that subreq - otherwise
			 * we get the responsibility.
			 */
			if (subreq->prev_donated != prev_donated) {
				spin_unlock_bh(&rreq->lock);
				goto donation_changed;
			}

			if (list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
				spin_unlock_bh(&rreq->lock);
				pr_err("Can't donate prior to front\n");
				goto bad;
			}

			prev = list_prev_entry(subreq, rreq_link);
			WRITE_ONCE(prev->next_donated, prev->next_donated + excess);
			subreq->start += excess;
			subreq->len -= excess;
			subreq->transferred -= excess;
			trace_netfs_donate(rreq, subreq, prev, excess,
					   netfs_trace_donate_tail_to_prev);
			trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);

			if (subreq->consumed >= subreq->len)
				goto remove_subreq_locked;
			spin_unlock_bh(&rreq->lock);
		} else {
			pr_err("fpos > start\n");
			goto bad;
		}

		/* Advance the rolling buffer to the next folio. */
		slot++;
		if (slot >= folioq_nr_slots(folioq)) {
			slot = 0;
			folioq = folioq->next;
			subreq->curr_folioq = folioq;
		}
		subreq->curr_folioq_slot = slot;
		if (folioq && folioq_folio(folioq, slot))
			subreq->curr_folio_order = folioq->orders[slot];
		if (!was_async)
			cond_resched();
		goto next_folio;
	}

	/* Deal with partial progress. */
	if (subreq->transferred < subreq->len)
		return false;

	/* Donate the remaining downloaded data to one of the neighbouring
	 * subrequests.  Note that we may race with them doing the same thing.
	 */
	spin_lock_bh(&rreq->lock);

	if (subreq->prev_donated != prev_donated ||
	    subreq->next_donated != next_donated) {
		spin_unlock_bh(&rreq->lock);
		cond_resched();
		goto donation_changed;
	}

	/* Deal with the trickiest case: that this subreq is in the middle of a
	 * folio, not touching either edge, but finishes first.  In such a
	 * case, we donate to the previous subreq, if there is one, so that the
	 * donation is only handled when that completes - and remove this
	 * subreq from the list.
	 *
	 * If the previous subreq finished first, we will have acquired their
	 * donation and should be able to unlock folios and/or donate nextwards.
	 */
	if (!subreq->consumed &&
	    !prev_donated &&
	    !list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
		prev = list_prev_entry(subreq, rreq_link);
		WRITE_ONCE(prev->next_donated, prev->next_donated + subreq->len);
		subreq->start += subreq->len;
		subreq->len = 0;
		subreq->transferred = 0;
		trace_netfs_donate(rreq, subreq, prev, subreq->len,
				   netfs_trace_donate_to_prev);
		trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
		goto remove_subreq_locked;
	}

	/* If we can't donate down the chain, donate up the chain instead. */
	excess = subreq->len - subreq->consumed + next_donated;

	if (!subreq->consumed)
		excess += prev_donated;

	if (list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
		rreq->prev_donated = excess;
		trace_netfs_donate(rreq, subreq, NULL, excess,
				   netfs_trace_donate_to_deferred_next);
	} else {
		next = list_next_entry(subreq, rreq_link);
		WRITE_ONCE(next->prev_donated, excess);
		trace_netfs_donate(rreq, subreq, next, excess,
				   netfs_trace_donate_to_next);
	}
	trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_next);
	subreq->len = subreq->consumed;
	subreq->transferred = subreq->consumed;
	goto remove_subreq_locked;

remove_subreq:
	spin_lock_bh(&rreq->lock);
remove_subreq_locked:
	subreq->consumed = subreq->len;
	list_del(&subreq->rreq_link);
	spin_unlock_bh(&rreq->lock);
	netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_consumed);
	return true;

bad:
	/* Errr... prev and next both donated to us, but insufficient to finish
	 * the folio.
	 */
	printk("R=%08x[%x] s=%llx-%llx %zx/%zx/%zx\n",
	       rreq->debug_id, subreq->debug_index,
	       subreq->start, subreq->start + subreq->transferred - 1,
	       subreq->consumed, subreq->transferred, subreq->len);
	printk("folio: %llx-%llx\n", fpos, fend - 1);
	printk("donated: prev=%zx next=%zx\n", prev_donated, next_donated);
	printk("s=%llx av=%zx part=%zx\n", start, avail, part);
	BUG();
}

/*
 * Do page flushing and suchlike after DIO.
 */
static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
{
	struct netfs_io_subrequest *subreq;
	unsigned int i;

	/* Collect unbuffered reads and direct reads, adding up the transfer
	 * sizes until we find the first short or failed subrequest.
	 */
	list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
		rreq->transferred += subreq->transferred;

		if (subreq->transferred < subreq->len ||
		    test_bit(NETFS_SREQ_FAILED, &subreq->flags)) {
			rreq->error = subreq->error;
			break;
		}
	}

	if (rreq->origin == NETFS_DIO_READ) {
		for (i = 0; i < rreq->direct_bv_count; i++) {
			flush_dcache_page(rreq->direct_bv[i].bv_page);
			// TODO: cifs marks pages in the destination buffer
			// dirty under some circumstances after a read.  Do we
			// need to do that too?
			set_page_dirty(rreq->direct_bv[i].bv_page);
		}
	}

	if (rreq->iocb) {
		rreq->iocb->ki_pos += rreq->transferred;
		if (rreq->iocb->ki_complete)
			rreq->iocb->ki_complete(
				rreq->iocb, rreq->error ? rreq->error : rreq->transferred);
	}
	if (rreq->netfs_ops->done)
		rreq->netfs_ops->done(rreq);
	if (rreq->origin == NETFS_DIO_READ)
		inode_dio_end(rreq->inode);
}

/*
 * Assess the state of a read request and decide what to do next.
 *
 * Note that we're in normal kernel thread context at this point, possibly
 * running on a workqueue.
 */
static void netfs_rreq_assess(struct netfs_io_request *rreq)
{
	trace_netfs_rreq(rreq, netfs_rreq_trace_assess);

	//netfs_rreq_is_still_valid(rreq);

	if (test_and_clear_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags)) {
		netfs_retry_reads(rreq);
		return;
	}

	if (rreq->origin == NETFS_DIO_READ ||
	    rreq->origin == NETFS_READ_GAPS)
		netfs_rreq_assess_dio(rreq);
	task_io_account_read(rreq->transferred);

	trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
	clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
	wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);

	trace_netfs_rreq(rreq, netfs_rreq_trace_done);
	netfs_clear_subrequests(rreq, false);
	netfs_unlock_abandoned_read_pages(rreq);
	if (unlikely(test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)))
		netfs_pgpriv2_write_to_the_cache(rreq);
}

void netfs_read_termination_worker(struct work_struct *work)
{
	struct netfs_io_request *rreq =
		container_of(work, struct netfs_io_request, work);
	netfs_see_request(rreq, netfs_rreq_trace_see_work);
	netfs_rreq_assess(rreq);
	netfs_put_request(rreq, false, netfs_rreq_trace_put_work_complete);
}

/*
 * Handle the completion of all outstanding I/O operations on a read request.
 * We inherit a ref from the caller.
 */
void netfs_rreq_terminated(struct netfs_io_request *rreq, bool was_async)
{
	if (!was_async)
		return netfs_rreq_assess(rreq);
	if (!work_pending(&rreq->work)) {
		netfs_get_request(rreq, netfs_rreq_trace_get_work);
		if (!queue_work(system_unbound_wq, &rreq->work))
			netfs_put_request(rreq, was_async, netfs_rreq_trace_put_work_nq);
	}
}

/**
 * netfs_read_subreq_progress - Note progress of a read operation.
 * @subreq: The read request that has terminated.
 * @was_async: True if we're in an asynchronous context.
 *
 * This tells the read side of netfs lib that a contributory I/O operation has
 * made some progress and that it may be possible to unlock some folios.
 *
 * Before calling, the filesystem should update subreq->transferred to track
 * the amount of data copied into the output buffer.
 *
 * If @was_async is true, the caller might be running in softirq or interrupt
 * context and we can't sleep.
 */
void netfs_read_subreq_progress(struct netfs_io_subrequest *subreq,
				bool was_async)
{
	struct netfs_io_request *rreq = subreq->rreq;

	trace_netfs_sreq(subreq, netfs_sreq_trace_progress);

	if (subreq->transferred > subreq->consumed &&
	    (rreq->origin == NETFS_READAHEAD ||
	     rreq->origin == NETFS_READPAGE ||
	     rreq->origin == NETFS_READ_FOR_WRITE)) {
		netfs_consume_read_data(subreq, was_async);
		__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
	}
}
EXPORT_SYMBOL(netfs_read_subreq_progress);

/**
 * netfs_read_subreq_terminated - Note the termination of an I/O operation.
 * @subreq: The I/O request that has terminated.
 * @error: Error code indicating type of completion.
 * @was_async: The termination was asynchronous
 *
 * This tells the read helper that a contributory I/O operation has terminated,
 * one way or another, and that it should integrate the results.
 *
 * The caller indicates the outcome of the operation through @error, supplying
 * 0 to indicate a successful or retryable transfer (if NETFS_SREQ_NEED_RETRY
 * is set) or a negative error code.  The helper will look after reissuing I/O
 * operations as appropriate and writing downloaded data to the cache.
 *
 * Before calling, the filesystem should update subreq->transferred to track
 * the amount of data copied into the output buffer.
 *
 * If @was_async is true, the caller might be running in softirq or interrupt
 * context and we can't sleep.
 */
void netfs_read_subreq_terminated(struct netfs_io_subrequest *subreq,
				  int error, bool was_async)
{
	struct netfs_io_request *rreq = subreq->rreq;

	switch (subreq->source) {
	case NETFS_READ_FROM_CACHE:
		netfs_stat(&netfs_n_rh_read_done);
		break;
	case NETFS_DOWNLOAD_FROM_SERVER:
		netfs_stat(&netfs_n_rh_download_done);
		break;
	default:
		break;
	}

	if (rreq->origin != NETFS_DIO_READ) {
		/* Collect buffered reads.
		 *
		 * If the read completed validly short, then we can clear the
		 * tail before going on to unlock the folios.
		 */
		if (error == 0 && subreq->transferred < subreq->len &&
		    (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags) ||
		     test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags))) {
			netfs_clear_unread(subreq);
			subreq->transferred = subreq->len;
			trace_netfs_sreq(subreq, netfs_sreq_trace_clear);
		}
		if (subreq->transferred > subreq->consumed &&
		    (rreq->origin == NETFS_READAHEAD ||
		     rreq->origin == NETFS_READPAGE ||
		     rreq->origin == NETFS_READ_FOR_WRITE)) {
			netfs_consume_read_data(subreq, was_async);
			__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
		}
		rreq->transferred += subreq->transferred;
	}

	/* Deal with retry requests, short reads and errors.  If we retry
	 * but don't make progress, we abandon the attempt.
	 */
	if (!error && subreq->transferred < subreq->len) {
		if (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags)) {
			trace_netfs_sreq(subreq, netfs_sreq_trace_hit_eof);
		} else {
			trace_netfs_sreq(subreq, netfs_sreq_trace_short);
			if (subreq->transferred > subreq->consumed) {
				__set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
				__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
				set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
			} else if (!__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
				__set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
				set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
			} else {
				__set_bit(NETFS_SREQ_FAILED, &subreq->flags);
				error = -ENODATA;
			}
		}
	}

	subreq->error = error;
	trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);

	if (unlikely(error < 0)) {
		trace_netfs_failure(rreq, subreq, error, netfs_fail_read);
		if (subreq->source == NETFS_READ_FROM_CACHE) {
			netfs_stat(&netfs_n_rh_read_failed);
		} else {
			netfs_stat(&netfs_n_rh_download_failed);
			set_bit(NETFS_RREQ_FAILED, &rreq->flags);
			rreq->error = subreq->error;
		}
	}

	if (atomic_dec_and_test(&rreq->nr_outstanding))
		netfs_rreq_terminated(rreq, was_async);

	netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
}
EXPORT_SYMBOL(netfs_read_subreq_terminated);