1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2018-2024 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_buf_mem.h"
#include "xfs_btree_mem.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_ag.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/btree.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
#include "scrub/agb_bitmap.h"
#include "scrub/xfile.h"
#include "scrub/xfarray.h"
#include "scrub/iscan.h"
#include "scrub/newbt.h"
#include "scrub/reap.h"
/*
* Reverse Mapping Btree Repair
* ============================
*
* This is the most involved of all the AG space btree rebuilds. Everywhere
* else in XFS we lock inodes and then AG data structures, but generating the
* list of rmap records requires that we be able to scan both block mapping
* btrees of every inode in the filesystem to see if it owns any extents in
* this AG. We can't tolerate any inode updates while we do this, so we
* freeze the filesystem to lock everyone else out, and grant ourselves
* special privileges to run transactions with regular background reclamation
* turned off.
*
* We also have to be very careful not to allow inode reclaim to start a
* transaction because all transactions (other than our own) will block.
* Deferred inode inactivation helps us out there.
*
* I) Reverse mappings for all non-space metadata and file data are collected
* according to the following algorithm:
*
* 1. For each fork of each inode:
* 1.1. Create a bitmap BMBIT to track bmbt blocks if necessary.
* 1.2. If the incore extent map isn't loaded, walk the bmbt to accumulate
* bmaps into rmap records (see 1.1.4). Set bits in BMBIT for each btree
* block.
* 1.3. If the incore extent map is loaded but the fork is in btree format,
* just visit the bmbt blocks to set the corresponding BMBIT areas.
* 1.4. From the incore extent map, accumulate each bmap that falls into our
* target AG. Remember, multiple bmap records can map to a single rmap
* record, so we cannot simply emit rmap records 1:1.
* 1.5. Emit rmap records for each extent in BMBIT and free it.
* 2. Create bitmaps INOBIT and ICHUNKBIT.
* 3. For each record in the inobt, set the corresponding areas in ICHUNKBIT,
* and set bits in INOBIT for each btree block. If the inobt has no records
* at all, we must be careful to record its root in INOBIT.
* 4. For each block in the finobt, set the corresponding INOBIT area.
* 5. Emit rmap records for each extent in INOBIT and ICHUNKBIT and free them.
* 6. Create bitmaps REFCBIT and COWBIT.
* 7. For each CoW staging extent in the refcountbt, set the corresponding
* areas in COWBIT.
* 8. For each block in the refcountbt, set the corresponding REFCBIT area.
* 9. Emit rmap records for each extent in REFCBIT and COWBIT and free them.
* A. Emit rmap for the AG headers.
* B. Emit rmap for the log, if there is one.
*
* II) The rmapbt shape and space metadata rmaps are computed as follows:
*
* 1. Count the rmaps collected in the previous step. (= NR)
* 2. Estimate the number of rmapbt blocks needed to store NR records. (= RMB)
* 3. Reserve RMB blocks through the newbt using the allocator in normap mode.
* 4. Create bitmap AGBIT.
* 5. For each reservation in the newbt, set the corresponding areas in AGBIT.
* 6. For each block in the AGFL, bnobt, and cntbt, set the bits in AGBIT.
* 7. Count the extents in AGBIT. (= AGNR)
* 8. Estimate the number of rmapbt blocks needed for NR + AGNR rmaps. (= RMB')
* 9. If RMB' >= RMB, reserve RMB' - RMB more newbt blocks, set RMB = RMB',
* and clear AGBIT. Go to step 5.
* A. Emit rmaps for each extent in AGBIT.
*
* III) The rmapbt is constructed and set in place as follows:
*
* 1. Sort the rmap records.
* 2. Bulk load the rmaps.
*
* IV) Reap the old btree blocks.
*
* 1. Create a bitmap OLDRMBIT.
* 2. For each gap in the new rmapbt, set the corresponding areas of OLDRMBIT.
* 3. For each extent in the bnobt, clear the corresponding parts of OLDRMBIT.
* 4. Reap the extents corresponding to the set areas in OLDRMBIT. These are
* the parts of the AG that the rmap didn't find during its scan of the
* primary metadata and aren't known to be in the free space, which implies
* that they were the old rmapbt blocks.
* 5. Commit.
*
* We use the 'xrep_rmap' prefix for all the rmap functions.
*/
/* Context for collecting rmaps */
struct xrep_rmap {
/* new rmapbt information */
struct xrep_newbt new_btree;
/* lock for the xfbtree and xfile */
struct mutex lock;
/* rmap records generated from primary metadata */
struct xfbtree rmap_btree;
struct xfs_scrub *sc;
/* in-memory btree cursor for the xfs_btree_bload iteration */
struct xfs_btree_cur *mcur;
/* Hooks into rmap update code. */
struct xfs_rmap_hook rhook;
/* inode scan cursor */
struct xchk_iscan iscan;
/* Number of non-freespace records found. */
unsigned long long nr_records;
/* bnobt/cntbt contribution to btreeblks */
xfs_agblock_t freesp_btblocks;
/* old agf_rmap_blocks counter */
unsigned int old_rmapbt_fsbcount;
};
/* Set us up to repair reverse mapping btrees. */
int
xrep_setup_ag_rmapbt(
struct xfs_scrub *sc)
{
struct xrep_rmap *rr;
char *descr;
int error;
xchk_fsgates_enable(sc, XCHK_FSGATES_RMAP);
descr = xchk_xfile_ag_descr(sc, "reverse mapping records");
error = xrep_setup_xfbtree(sc, descr);
kfree(descr);
if (error)
return error;
rr = kzalloc(sizeof(struct xrep_rmap), XCHK_GFP_FLAGS);
if (!rr)
return -ENOMEM;
rr->sc = sc;
sc->buf = rr;
return 0;
}
/* Make sure there's nothing funny about this mapping. */
STATIC int
xrep_rmap_check_mapping(
struct xfs_scrub *sc,
const struct xfs_rmap_irec *rec)
{
enum xbtree_recpacking outcome;
int error;
if (xfs_rmap_check_irec(sc->sa.pag, rec) != NULL)
return -EFSCORRUPTED;
/* Make sure this isn't free space. */
error = xfs_alloc_has_records(sc->sa.bno_cur, rec->rm_startblock,
rec->rm_blockcount, &outcome);
if (error)
return error;
if (outcome != XBTREE_RECPACKING_EMPTY)
return -EFSCORRUPTED;
return 0;
}
/* Store a reverse-mapping record. */
static inline int
xrep_rmap_stash(
struct xrep_rmap *rr,
xfs_agblock_t startblock,
xfs_extlen_t blockcount,
uint64_t owner,
uint64_t offset,
unsigned int flags)
{
struct xfs_rmap_irec rmap = {
.rm_startblock = startblock,
.rm_blockcount = blockcount,
.rm_owner = owner,
.rm_offset = offset,
.rm_flags = flags,
};
struct xfs_scrub *sc = rr->sc;
struct xfs_btree_cur *mcur;
int error = 0;
if (xchk_should_terminate(sc, &error))
return error;
if (xchk_iscan_aborted(&rr->iscan))
return -EFSCORRUPTED;
trace_xrep_rmap_found(sc->sa.pag, &rmap);
mutex_lock(&rr->lock);
mcur = xfs_rmapbt_mem_cursor(sc->sa.pag, sc->tp, &rr->rmap_btree);
error = xfs_rmap_map_raw(mcur, &rmap);
xfs_btree_del_cursor(mcur, error);
if (error)
goto out_cancel;
error = xfbtree_trans_commit(&rr->rmap_btree, sc->tp);
if (error)
goto out_abort;
mutex_unlock(&rr->lock);
return 0;
out_cancel:
xfbtree_trans_cancel(&rr->rmap_btree, sc->tp);
out_abort:
xchk_iscan_abort(&rr->iscan);
mutex_unlock(&rr->lock);
return error;
}
struct xrep_rmap_stash_run {
struct xrep_rmap *rr;
uint64_t owner;
unsigned int rmap_flags;
};
static int
xrep_rmap_stash_run(
uint32_t start,
uint32_t len,
void *priv)
{
struct xrep_rmap_stash_run *rsr = priv;
struct xrep_rmap *rr = rsr->rr;
return xrep_rmap_stash(rr, start, len, rsr->owner, 0, rsr->rmap_flags);
}
/*
* Emit rmaps for every extent of bits set in the bitmap. Caller must ensure
* that the ranges are in units of FS blocks.
*/
STATIC int
xrep_rmap_stash_bitmap(
struct xrep_rmap *rr,
struct xagb_bitmap *bitmap,
const struct xfs_owner_info *oinfo)
{
struct xrep_rmap_stash_run rsr = {
.rr = rr,
.owner = oinfo->oi_owner,
.rmap_flags = 0,
};
if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
rsr.rmap_flags |= XFS_RMAP_ATTR_FORK;
if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
rsr.rmap_flags |= XFS_RMAP_BMBT_BLOCK;
return xagb_bitmap_walk(bitmap, xrep_rmap_stash_run, &rsr);
}
/* Section (I): Finding all file and bmbt extents. */
/* Context for accumulating rmaps for an inode fork. */
struct xrep_rmap_ifork {
/*
* Accumulate rmap data here to turn multiple adjacent bmaps into a
* single rmap.
*/
struct xfs_rmap_irec accum;
/* Bitmap of bmbt blocks in this AG. */
struct xagb_bitmap bmbt_blocks;
struct xrep_rmap *rr;
/* Which inode fork? */
int whichfork;
};
/* Stash an rmap that we accumulated while walking an inode fork. */
STATIC int
xrep_rmap_stash_accumulated(
struct xrep_rmap_ifork *rf)
{
if (rf->accum.rm_blockcount == 0)
return 0;
return xrep_rmap_stash(rf->rr, rf->accum.rm_startblock,
rf->accum.rm_blockcount, rf->accum.rm_owner,
rf->accum.rm_offset, rf->accum.rm_flags);
}
/* Accumulate a bmbt record. */
STATIC int
xrep_rmap_visit_bmbt(
struct xfs_btree_cur *cur,
struct xfs_bmbt_irec *rec,
void *priv)
{
struct xrep_rmap_ifork *rf = priv;
struct xfs_mount *mp = rf->rr->sc->mp;
struct xfs_rmap_irec *accum = &rf->accum;
xfs_agblock_t agbno;
unsigned int rmap_flags = 0;
int error;
if (XFS_FSB_TO_AGNO(mp, rec->br_startblock) !=
rf->rr->sc->sa.pag->pag_agno)
return 0;
agbno = XFS_FSB_TO_AGBNO(mp, rec->br_startblock);
if (rf->whichfork == XFS_ATTR_FORK)
rmap_flags |= XFS_RMAP_ATTR_FORK;
if (rec->br_state == XFS_EXT_UNWRITTEN)
rmap_flags |= XFS_RMAP_UNWRITTEN;
/* If this bmap is adjacent to the previous one, just add it. */
if (accum->rm_blockcount > 0 &&
rec->br_startoff == accum->rm_offset + accum->rm_blockcount &&
agbno == accum->rm_startblock + accum->rm_blockcount &&
rmap_flags == accum->rm_flags) {
accum->rm_blockcount += rec->br_blockcount;
return 0;
}
/* Otherwise stash the old rmap and start accumulating a new one. */
error = xrep_rmap_stash_accumulated(rf);
if (error)
return error;
accum->rm_startblock = agbno;
accum->rm_blockcount = rec->br_blockcount;
accum->rm_offset = rec->br_startoff;
accum->rm_flags = rmap_flags;
return 0;
}
/* Add a btree block to the bitmap. */
STATIC int
xrep_rmap_visit_iroot_btree_block(
struct xfs_btree_cur *cur,
int level,
void *priv)
{
struct xrep_rmap_ifork *rf = priv;
struct xfs_buf *bp;
xfs_fsblock_t fsbno;
xfs_agblock_t agbno;
xfs_btree_get_block(cur, level, &bp);
if (!bp)
return 0;
fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
if (XFS_FSB_TO_AGNO(cur->bc_mp, fsbno) != rf->rr->sc->sa.pag->pag_agno)
return 0;
agbno = XFS_FSB_TO_AGBNO(cur->bc_mp, fsbno);
return xagb_bitmap_set(&rf->bmbt_blocks, agbno, 1);
}
/*
* Iterate a metadata btree rooted in an inode to collect rmap records for
* anything in this fork that matches the AG.
*/
STATIC int
xrep_rmap_scan_iroot_btree(
struct xrep_rmap_ifork *rf,
struct xfs_btree_cur *cur)
{
struct xfs_owner_info oinfo;
struct xrep_rmap *rr = rf->rr;
int error;
xagb_bitmap_init(&rf->bmbt_blocks);
/* Record all the blocks in the btree itself. */
error = xfs_btree_visit_blocks(cur, xrep_rmap_visit_iroot_btree_block,
XFS_BTREE_VISIT_ALL, rf);
if (error)
goto out;
/* Emit rmaps for the btree blocks. */
xfs_rmap_ino_bmbt_owner(&oinfo, rf->accum.rm_owner, rf->whichfork);
error = xrep_rmap_stash_bitmap(rr, &rf->bmbt_blocks, &oinfo);
if (error)
goto out;
/* Stash any remaining accumulated rmaps. */
error = xrep_rmap_stash_accumulated(rf);
out:
xagb_bitmap_destroy(&rf->bmbt_blocks);
return error;
}
/*
* Iterate the block mapping btree to collect rmap records for anything in this
* fork that matches the AG. Sets @mappings_done to true if we've scanned the
* block mappings in this fork.
*/
STATIC int
xrep_rmap_scan_bmbt(
struct xrep_rmap_ifork *rf,
struct xfs_inode *ip,
bool *mappings_done)
{
struct xrep_rmap *rr = rf->rr;
struct xfs_btree_cur *cur;
struct xfs_ifork *ifp;
int error;
*mappings_done = false;
ifp = xfs_ifork_ptr(ip, rf->whichfork);
cur = xfs_bmbt_init_cursor(rr->sc->mp, rr->sc->tp, ip, rf->whichfork);
if (!xfs_ifork_is_realtime(ip, rf->whichfork) &&
xfs_need_iread_extents(ifp)) {
/*
* If the incore extent cache isn't loaded, scan the bmbt for
* mapping records. This avoids loading the incore extent
* tree, which will increase memory pressure at a time when
* we're trying to run as quickly as we possibly can. Ignore
* realtime extents.
*/
error = xfs_bmap_query_all(cur, xrep_rmap_visit_bmbt, rf);
if (error)
goto out_cur;
*mappings_done = true;
}
/* Scan for the bmbt blocks, which always live on the data device. */
error = xrep_rmap_scan_iroot_btree(rf, cur);
out_cur:
xfs_btree_del_cursor(cur, error);
return error;
}
/*
* Iterate the in-core extent cache to collect rmap records for anything in
* this fork that matches the AG.
*/
STATIC int
xrep_rmap_scan_iext(
struct xrep_rmap_ifork *rf,
struct xfs_ifork *ifp)
{
struct xfs_bmbt_irec rec;
struct xfs_iext_cursor icur;
int error;
for_each_xfs_iext(ifp, &icur, &rec) {
if (isnullstartblock(rec.br_startblock))
continue;
error = xrep_rmap_visit_bmbt(NULL, &rec, rf);
if (error)
return error;
}
return xrep_rmap_stash_accumulated(rf);
}
/* Find all the extents from a given AG in an inode fork. */
STATIC int
xrep_rmap_scan_ifork(
struct xrep_rmap *rr,
struct xfs_inode *ip,
int whichfork)
{
struct xrep_rmap_ifork rf = {
.accum = { .rm_owner = ip->i_ino, },
.rr = rr,
.whichfork = whichfork,
};
struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
int error = 0;
if (!ifp)
return 0;
if (ifp->if_format == XFS_DINODE_FMT_BTREE) {
bool mappings_done;
/*
* Scan the bmap btree for data device mappings. This includes
* the btree blocks themselves, even if this is a realtime
* file.
*/
error = xrep_rmap_scan_bmbt(&rf, ip, &mappings_done);
if (error || mappings_done)
return error;
} else if (ifp->if_format != XFS_DINODE_FMT_EXTENTS) {
return 0;
}
/* Scan incore extent cache if this isn't a realtime file. */
if (xfs_ifork_is_realtime(ip, whichfork))
return 0;
return xrep_rmap_scan_iext(&rf, ifp);
}
/*
* Take ILOCK on a file that we want to scan.
*
* Select ILOCK_EXCL if the file has an unloaded data bmbt or has an unloaded
* attr bmbt. Otherwise, take ILOCK_SHARED.
*/
static inline unsigned int
xrep_rmap_scan_ilock(
struct xfs_inode *ip)
{
uint lock_mode = XFS_ILOCK_SHARED;
if (xfs_need_iread_extents(&ip->i_df)) {
lock_mode = XFS_ILOCK_EXCL;
goto lock;
}
if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
lock_mode = XFS_ILOCK_EXCL;
lock:
xfs_ilock(ip, lock_mode);
return lock_mode;
}
/* Record reverse mappings for a file. */
STATIC int
xrep_rmap_scan_inode(
struct xrep_rmap *rr,
struct xfs_inode *ip)
{
unsigned int lock_mode = xrep_rmap_scan_ilock(ip);
int error;
/* Check the data fork. */
error = xrep_rmap_scan_ifork(rr, ip, XFS_DATA_FORK);
if (error)
goto out_unlock;
/* Check the attr fork. */
error = xrep_rmap_scan_ifork(rr, ip, XFS_ATTR_FORK);
if (error)
goto out_unlock;
/* COW fork extents are "owned" by the refcount btree. */
xchk_iscan_mark_visited(&rr->iscan, ip);
out_unlock:
xfs_iunlock(ip, lock_mode);
return error;
}
/* Section (I): Find all AG metadata extents except for free space metadata. */
struct xrep_rmap_inodes {
struct xrep_rmap *rr;
struct xagb_bitmap inobt_blocks; /* INOBIT */
struct xagb_bitmap ichunk_blocks; /* ICHUNKBIT */
};
/* Record inode btree rmaps. */
STATIC int
xrep_rmap_walk_inobt(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *rec,
void *priv)
{
struct xfs_inobt_rec_incore irec;
struct xrep_rmap_inodes *ri = priv;
struct xfs_mount *mp = cur->bc_mp;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agino_t agino;
xfs_agino_t iperhole;
unsigned int i;
int error;
/* Record the inobt blocks. */
error = xagb_bitmap_set_btcur_path(&ri->inobt_blocks, cur);
if (error)
return error;
xfs_inobt_btrec_to_irec(mp, rec, &irec);
if (xfs_inobt_check_irec(cur->bc_ag.pag, &irec) != NULL)
return -EFSCORRUPTED;
agino = irec.ir_startino;
/* Record a non-sparse inode chunk. */
if (!xfs_inobt_issparse(irec.ir_holemask)) {
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
aglen = max_t(xfs_extlen_t, 1,
XFS_INODES_PER_CHUNK / mp->m_sb.sb_inopblock);
return xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen);
}
/* Iterate each chunk. */
iperhole = max_t(xfs_agino_t, mp->m_sb.sb_inopblock,
XFS_INODES_PER_HOLEMASK_BIT);
aglen = iperhole / mp->m_sb.sb_inopblock;
for (i = 0, agino = irec.ir_startino;
i < XFS_INOBT_HOLEMASK_BITS;
i += iperhole / XFS_INODES_PER_HOLEMASK_BIT, agino += iperhole) {
/* Skip holes. */
if (irec.ir_holemask & (1 << i))
continue;
/* Record the inode chunk otherwise. */
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
error = xagb_bitmap_set(&ri->ichunk_blocks, agbno, aglen);
if (error)
return error;
}
return 0;
}
/* Collect rmaps for the blocks containing inode btrees and the inode chunks. */
STATIC int
xrep_rmap_find_inode_rmaps(
struct xrep_rmap *rr)
{
struct xrep_rmap_inodes ri = {
.rr = rr,
};
struct xfs_scrub *sc = rr->sc;
int error;
xagb_bitmap_init(&ri.inobt_blocks);
xagb_bitmap_init(&ri.ichunk_blocks);
/*
* Iterate every record in the inobt so we can capture all the inode
* chunks and the blocks in the inobt itself.
*/
error = xfs_btree_query_all(sc->sa.ino_cur, xrep_rmap_walk_inobt, &ri);
if (error)
goto out_bitmap;
/*
* Note that if there are zero records in the inobt then query_all does
* nothing and we have to account the empty inobt root manually.
*/
if (xagb_bitmap_empty(&ri.ichunk_blocks)) {
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
error = xagb_bitmap_set(&ri.inobt_blocks,
be32_to_cpu(agi->agi_root), 1);
if (error)
goto out_bitmap;
}
/* Scan the finobt too. */
if (xfs_has_finobt(sc->mp)) {
error = xagb_bitmap_set_btblocks(&ri.inobt_blocks,
sc->sa.fino_cur);
if (error)
goto out_bitmap;
}
/* Generate rmaps for everything. */
error = xrep_rmap_stash_bitmap(rr, &ri.inobt_blocks,
&XFS_RMAP_OINFO_INOBT);
if (error)
goto out_bitmap;
error = xrep_rmap_stash_bitmap(rr, &ri.ichunk_blocks,
&XFS_RMAP_OINFO_INODES);
out_bitmap:
xagb_bitmap_destroy(&ri.inobt_blocks);
xagb_bitmap_destroy(&ri.ichunk_blocks);
return error;
}
/* Record a CoW staging extent. */
STATIC int
xrep_rmap_walk_cowblocks(
struct xfs_btree_cur *cur,
const struct xfs_refcount_irec *irec,
void *priv)
{
struct xagb_bitmap *bitmap = priv;
if (!xfs_refcount_check_domain(irec) ||
irec->rc_domain != XFS_REFC_DOMAIN_COW)
return -EFSCORRUPTED;
return xagb_bitmap_set(bitmap, irec->rc_startblock, irec->rc_blockcount);
}
/*
* Collect rmaps for the blocks containing the refcount btree, and all CoW
* staging extents.
*/
STATIC int
xrep_rmap_find_refcount_rmaps(
struct xrep_rmap *rr)
{
struct xagb_bitmap refcountbt_blocks; /* REFCBIT */
struct xagb_bitmap cow_blocks; /* COWBIT */
struct xfs_refcount_irec low = {
.rc_startblock = 0,
.rc_domain = XFS_REFC_DOMAIN_COW,
};
struct xfs_refcount_irec high = {
.rc_startblock = -1U,
.rc_domain = XFS_REFC_DOMAIN_COW,
};
struct xfs_scrub *sc = rr->sc;
int error;
if (!xfs_has_reflink(sc->mp))
return 0;
xagb_bitmap_init(&refcountbt_blocks);
xagb_bitmap_init(&cow_blocks);
/* refcountbt */
error = xagb_bitmap_set_btblocks(&refcountbt_blocks, sc->sa.refc_cur);
if (error)
goto out_bitmap;
/* Collect rmaps for CoW staging extents. */
error = xfs_refcount_query_range(sc->sa.refc_cur, &low, &high,
xrep_rmap_walk_cowblocks, &cow_blocks);
if (error)
goto out_bitmap;
/* Generate rmaps for everything. */
error = xrep_rmap_stash_bitmap(rr, &cow_blocks, &XFS_RMAP_OINFO_COW);
if (error)
goto out_bitmap;
error = xrep_rmap_stash_bitmap(rr, &refcountbt_blocks,
&XFS_RMAP_OINFO_REFC);
out_bitmap:
xagb_bitmap_destroy(&cow_blocks);
xagb_bitmap_destroy(&refcountbt_blocks);
return error;
}
/* Generate rmaps for the AG headers (AGI/AGF/AGFL) */
STATIC int
xrep_rmap_find_agheader_rmaps(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
/* Create a record for the AG sb->agfl. */
return xrep_rmap_stash(rr, XFS_SB_BLOCK(sc->mp),
XFS_AGFL_BLOCK(sc->mp) - XFS_SB_BLOCK(sc->mp) + 1,
XFS_RMAP_OWN_FS, 0, 0);
}
/* Generate rmaps for the log, if it's in this AG. */
STATIC int
xrep_rmap_find_log_rmaps(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
if (!xfs_ag_contains_log(sc->mp, sc->sa.pag->pag_agno))
return 0;
return xrep_rmap_stash(rr,
XFS_FSB_TO_AGBNO(sc->mp, sc->mp->m_sb.sb_logstart),
sc->mp->m_sb.sb_logblocks, XFS_RMAP_OWN_LOG, 0, 0);
}
/* Check and count all the records that we gathered. */
STATIC int
xrep_rmap_check_record(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_rmap *rr = priv;
int error;
error = xrep_rmap_check_mapping(rr->sc, rec);
if (error)
return error;
rr->nr_records++;
return 0;
}
/*
* Generate all the reverse-mappings for this AG, a list of the old rmapbt
* blocks, and the new btreeblks count. Figure out if we have enough free
* space to reconstruct the inode btrees. The caller must clean up the lists
* if anything goes wrong. This implements section (I) above.
*/
STATIC int
xrep_rmap_find_rmaps(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
struct xchk_ag *sa = &sc->sa;
struct xfs_inode *ip;
struct xfs_btree_cur *mcur;
int error;
/* Find all the per-AG metadata. */
xrep_ag_btcur_init(sc, &sc->sa);
error = xrep_rmap_find_inode_rmaps(rr);
if (error)
goto end_agscan;
error = xrep_rmap_find_refcount_rmaps(rr);
if (error)
goto end_agscan;
error = xrep_rmap_find_agheader_rmaps(rr);
if (error)
goto end_agscan;
error = xrep_rmap_find_log_rmaps(rr);
end_agscan:
xchk_ag_btcur_free(&sc->sa);
if (error)
return error;
/*
* Set up for a potentially lengthy filesystem scan by reducing our
* transaction resource usage for the duration. Specifically:
*
* Unlock the AG header buffers and cancel the transaction to release
* the log grant space while we scan the filesystem.
*
* Create a new empty transaction to eliminate the possibility of the
* inode scan deadlocking on cyclical metadata.
*
* We pass the empty transaction to the file scanning function to avoid
* repeatedly cycling empty transactions. This can be done even though
* we take the IOLOCK to quiesce the file because empty transactions
* do not take sb_internal.
*/
sa->agf_bp = NULL;
sa->agi_bp = NULL;
xchk_trans_cancel(sc);
error = xchk_trans_alloc_empty(sc);
if (error)
return error;
/* Iterate all AGs for inodes rmaps. */
while ((error = xchk_iscan_iter(&rr->iscan, &ip)) == 1) {
error = xrep_rmap_scan_inode(rr, ip);
xchk_irele(sc, ip);
if (error)
break;
if (xchk_should_terminate(sc, &error))
break;
}
xchk_iscan_iter_finish(&rr->iscan);
if (error)
return error;
/*
* Switch out for a real transaction and lock the AG headers in
* preparation for building a new tree.
*/
xchk_trans_cancel(sc);
error = xchk_setup_fs(sc);
if (error)
return error;
error = xchk_perag_drain_and_lock(sc);
if (error)
return error;
/*
* If a hook failed to update the in-memory btree, we lack the data to
* continue the repair.
*/
if (xchk_iscan_aborted(&rr->iscan))
return -EFSCORRUPTED;
/*
* Now that we have everything locked again, we need to count the
* number of rmap records stashed in the btree. This should reflect
* all actively-owned space in the filesystem. At the same time, check
* all our records before we start building a new btree, which requires
* a bnobt cursor.
*/
mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree);
sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
rr->nr_records = 0;
error = xfs_rmap_query_all(mcur, xrep_rmap_check_record, rr);
xfs_btree_del_cursor(sc->sa.bno_cur, error);
sc->sa.bno_cur = NULL;
xfs_btree_del_cursor(mcur, error);
return error;
}
/* Section (II): Reserving space for new rmapbt and setting free space bitmap */
struct xrep_rmap_agfl {
struct xagb_bitmap *bitmap;
xfs_agnumber_t agno;
};
/* Add an AGFL block to the rmap list. */
STATIC int
xrep_rmap_walk_agfl(
struct xfs_mount *mp,
xfs_agblock_t agbno,
void *priv)
{
struct xrep_rmap_agfl *ra = priv;
return xagb_bitmap_set(ra->bitmap, agbno, 1);
}
/*
* Run one round of reserving space for the new rmapbt and recomputing the
* number of blocks needed to store the previously observed rmapbt records and
* the ones we'll create for the free space metadata. When we don't need more
* blocks, return a bitmap of OWN_AG extents in @freesp_blocks and set @done to
* true.
*/
STATIC int
xrep_rmap_try_reserve(
struct xrep_rmap *rr,
struct xfs_btree_cur *rmap_cur,
struct xagb_bitmap *freesp_blocks,
uint64_t *blocks_reserved,
bool *done)
{
struct xrep_rmap_agfl ra = {
.bitmap = freesp_blocks,
.agno = rr->sc->sa.pag->pag_agno,
};
struct xfs_scrub *sc = rr->sc;
struct xrep_newbt_resv *resv, *n;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
struct xfs_buf *agfl_bp;
uint64_t nr_blocks; /* RMB */
uint64_t freesp_records;
int error;
/*
* We're going to recompute new_btree.bload.nr_blocks at the end of
* this function to reflect however many btree blocks we need to store
* all the rmap records (including the ones that reflect the changes we
* made to support the new rmapbt blocks), so we save the old value
* here so we can decide if we've reserved enough blocks.
*/
nr_blocks = rr->new_btree.bload.nr_blocks;
/*
* Make sure we've reserved enough space for the new btree. This can
* change the shape of the free space btrees, which can cause secondary
* interactions with the rmap records because all three space btrees
* have the same rmap owner. We'll account for all that below.
*/
error = xrep_newbt_alloc_blocks(&rr->new_btree,
nr_blocks - *blocks_reserved);
if (error)
return error;
*blocks_reserved = rr->new_btree.bload.nr_blocks;
/* Clear everything in the bitmap. */
xagb_bitmap_destroy(freesp_blocks);
/* Set all the bnobt blocks in the bitmap. */
sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.bno_cur);
xfs_btree_del_cursor(sc->sa.bno_cur, error);
sc->sa.bno_cur = NULL;
if (error)
return error;
/* Set all the cntbt blocks in the bitmap. */
sc->sa.cnt_cur = xfs_cntbt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
error = xagb_bitmap_set_btblocks(freesp_blocks, sc->sa.cnt_cur);
xfs_btree_del_cursor(sc->sa.cnt_cur, error);
sc->sa.cnt_cur = NULL;
if (error)
return error;
/* Record our new btreeblks value. */
rr->freesp_btblocks = xagb_bitmap_hweight(freesp_blocks) - 2;
/* Set all the new rmapbt blocks in the bitmap. */
list_for_each_entry_safe(resv, n, &rr->new_btree.resv_list, list) {
error = xagb_bitmap_set(freesp_blocks, resv->agbno, resv->len);
if (error)
return error;
}
/* Set all the AGFL blocks in the bitmap. */
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
if (error)
return error;
error = xfs_agfl_walk(sc->mp, agf, agfl_bp, xrep_rmap_walk_agfl, &ra);
if (error)
return error;
/* Count the extents in the bitmap. */
freesp_records = xagb_bitmap_count_set_regions(freesp_blocks);
/* Compute how many blocks we'll need for all the rmaps. */
error = xfs_btree_bload_compute_geometry(rmap_cur,
&rr->new_btree.bload, rr->nr_records + freesp_records);
if (error)
return error;
/* We're done when we don't need more blocks. */
*done = nr_blocks >= rr->new_btree.bload.nr_blocks;
return 0;
}
/*
* Iteratively reserve space for rmap btree while recording OWN_AG rmaps for
* the free space metadata. This implements section (II) above.
*/
STATIC int
xrep_rmap_reserve_space(
struct xrep_rmap *rr,
struct xfs_btree_cur *rmap_cur)
{
struct xagb_bitmap freesp_blocks; /* AGBIT */
uint64_t blocks_reserved = 0;
bool done = false;
int error;
/* Compute how many blocks we'll need for the rmaps collected so far. */
error = xfs_btree_bload_compute_geometry(rmap_cur,
&rr->new_btree.bload, rr->nr_records);
if (error)
return error;
/* Last chance to abort before we start committing fixes. */
if (xchk_should_terminate(rr->sc, &error))
return error;
xagb_bitmap_init(&freesp_blocks);
/*
* Iteratively reserve space for the new rmapbt and recompute the
* number of blocks needed to store the previously observed rmapbt
* records and the ones we'll create for the free space metadata.
* Finish when we don't need more blocks.
*/
do {
error = xrep_rmap_try_reserve(rr, rmap_cur, &freesp_blocks,
&blocks_reserved, &done);
if (error)
goto out_bitmap;
} while (!done);
/* Emit rmaps for everything in the free space bitmap. */
xrep_ag_btcur_init(rr->sc, &rr->sc->sa);
error = xrep_rmap_stash_bitmap(rr, &freesp_blocks, &XFS_RMAP_OINFO_AG);
xchk_ag_btcur_free(&rr->sc->sa);
out_bitmap:
xagb_bitmap_destroy(&freesp_blocks);
return error;
}
/* Section (III): Building the new rmap btree. */
/* Update the AGF counters. */
STATIC int
xrep_rmap_reset_counters(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
xfs_agblock_t rmap_btblocks;
/*
* The AGF header contains extra information related to the reverse
* mapping btree, so we must update those fields here.
*/
rmap_btblocks = rr->new_btree.afake.af_blocks - 1;
agf->agf_btreeblks = cpu_to_be32(rr->freesp_btblocks + rmap_btblocks);
xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS);
/*
* After we commit the new btree to disk, it is possible that the
* process to reap the old btree blocks will race with the AIL trying
* to checkpoint the old btree blocks into the filesystem. If the new
* tree is shorter than the old one, the rmapbt write verifier will
* fail and the AIL will shut down the filesystem.
*
* To avoid this, save the old incore btree height values as the alt
* height values before re-initializing the perag info from the updated
* AGF to capture all the new values.
*/
pag->pagf_repair_rmap_level = pag->pagf_rmap_level;
/* Reinitialize with the values we just logged. */
return xrep_reinit_pagf(sc);
}
/* Retrieve rmapbt data for bulk load. */
STATIC int
xrep_rmap_get_records(
struct xfs_btree_cur *cur,
unsigned int idx,
struct xfs_btree_block *block,
unsigned int nr_wanted,
void *priv)
{
struct xrep_rmap *rr = priv;
union xfs_btree_rec *block_rec;
unsigned int loaded;
int error;
for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
int stat = 0;
error = xfs_btree_increment(rr->mcur, 0, &stat);
if (error)
return error;
if (!stat)
return -EFSCORRUPTED;
error = xfs_rmap_get_rec(rr->mcur, &cur->bc_rec.r, &stat);
if (error)
return error;
if (!stat)
return -EFSCORRUPTED;
block_rec = xfs_btree_rec_addr(cur, idx, block);
cur->bc_ops->init_rec_from_cur(cur, block_rec);
}
return loaded;
}
/* Feed one of the new btree blocks to the bulk loader. */
STATIC int
xrep_rmap_claim_block(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr,
void *priv)
{
struct xrep_rmap *rr = priv;
return xrep_newbt_claim_block(cur, &rr->new_btree, ptr);
}
/* Custom allocation function for new rmap btrees. */
STATIC int
xrep_rmap_alloc_vextent(
struct xfs_scrub *sc,
struct xfs_alloc_arg *args,
xfs_fsblock_t alloc_hint)
{
int error;
/*
* We don't want an rmap update on the allocation, since we iteratively
* compute the OWN_AG records /after/ allocating blocks for the records
* that we already know we need to store. Therefore, fix the freelist
* with the NORMAP flag set so that we don't also try to create an rmap
* for new AGFL blocks.
*/
error = xrep_fix_freelist(sc, XFS_ALLOC_FLAG_NORMAP);
if (error)
return error;
/*
* If xrep_fix_freelist fixed the freelist by moving blocks from the
* free space btrees or by removing blocks from the AGFL and queueing
* an EFI to free the block, the transaction will be dirty. This
* second case is of interest to us.
*
* Later on, we will need to compare gaps in the new recordset against
* the block usage of all OWN_AG owners in order to free the old
* btree's blocks, which means that we can't have EFIs for former AGFL
* blocks attached to the repair transaction when we commit the new
* btree.
*
* xrep_newbt_alloc_blocks guarantees this for us by calling
* xrep_defer_finish to commit anything that fix_freelist may have
* added to the transaction.
*/
return xfs_alloc_vextent_near_bno(args, alloc_hint);
}
/* Count the records in this btree. */
STATIC int
xrep_rmap_count_records(
struct xfs_btree_cur *cur,
unsigned long long *nr)
{
int running = 1;
int error;
*nr = 0;
error = xfs_btree_goto_left_edge(cur);
if (error)
return error;
while (running && !(error = xfs_btree_increment(cur, 0, &running))) {
if (running)
(*nr)++;
}
return error;
}
/*
* Use the collected rmap information to stage a new rmap btree. If this is
* successful we'll return with the new btree root information logged to the
* repair transaction but not yet committed. This implements section (III)
* above.
*/
STATIC int
xrep_rmap_build_new_tree(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
struct xfs_btree_cur *rmap_cur;
int error;
/*
* Preserve the old rmapbt block count so that we can adjust the
* per-AG rmapbt reservation after we commit the new btree root and
* want to dispose of the old btree blocks.
*/
rr->old_rmapbt_fsbcount = be32_to_cpu(agf->agf_rmap_blocks);
/*
* Prepare to construct the new btree by reserving disk space for the
* new btree and setting up all the accounting information we'll need
* to root the new btree while it's under construction and before we
* attach it to the AG header. The new blocks are accounted to the
* rmapbt per-AG reservation, which we will adjust further after
* committing the new btree.
*/
xrep_newbt_init_ag(&rr->new_btree, sc, &XFS_RMAP_OINFO_SKIP_UPDATE,
xfs_agbno_to_fsb(pag, XFS_RMAP_BLOCK(sc->mp)),
XFS_AG_RESV_RMAPBT);
rr->new_btree.bload.get_records = xrep_rmap_get_records;
rr->new_btree.bload.claim_block = xrep_rmap_claim_block;
rr->new_btree.alloc_vextent = xrep_rmap_alloc_vextent;
rmap_cur = xfs_rmapbt_init_cursor(sc->mp, NULL, NULL, pag);
xfs_btree_stage_afakeroot(rmap_cur, &rr->new_btree.afake);
/*
* Initialize @rr->new_btree, reserve space for the new rmapbt,
* and compute OWN_AG rmaps.
*/
error = xrep_rmap_reserve_space(rr, rmap_cur);
if (error)
goto err_cur;
/*
* Count the rmapbt records again, because the space reservation
* for the rmapbt itself probably added more records to the btree.
*/
rr->mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL,
&rr->rmap_btree);
error = xrep_rmap_count_records(rr->mcur, &rr->nr_records);
if (error)
goto err_mcur;
/*
* Due to btree slack factors, it's possible for a new btree to be one
* level taller than the old btree. Update the incore btree height so
* that we don't trip the verifiers when writing the new btree blocks
* to disk.
*/
pag->pagf_repair_rmap_level = rr->new_btree.bload.btree_height;
/*
* Move the cursor to the left edge of the tree so that the first
* increment in ->get_records positions us at the first record.
*/
error = xfs_btree_goto_left_edge(rr->mcur);
if (error)
goto err_level;
/* Add all observed rmap records. */
error = xfs_btree_bload(rmap_cur, &rr->new_btree.bload, rr);
if (error)
goto err_level;
/*
* Install the new btree in the AG header. After this point the old
* btree is no longer accessible and the new tree is live.
*/
xfs_rmapbt_commit_staged_btree(rmap_cur, sc->tp, sc->sa.agf_bp);
xfs_btree_del_cursor(rmap_cur, 0);
xfs_btree_del_cursor(rr->mcur, 0);
rr->mcur = NULL;
/*
* Now that we've written the new btree to disk, we don't need to keep
* updating the in-memory btree. Abort the scan to stop live updates.
*/
xchk_iscan_abort(&rr->iscan);
/*
* The newly committed rmap recordset includes mappings for the blocks
* that we reserved to build the new btree. If there is excess space
* reservation to be freed, the corresponding rmap records must also be
* removed.
*/
rr->new_btree.oinfo = XFS_RMAP_OINFO_AG;
/* Reset the AGF counters now that we've changed the btree shape. */
error = xrep_rmap_reset_counters(rr);
if (error)
goto err_newbt;
/* Dispose of any unused blocks and the accounting information. */
error = xrep_newbt_commit(&rr->new_btree);
if (error)
return error;
return xrep_roll_ag_trans(sc);
err_level:
pag->pagf_repair_rmap_level = 0;
err_mcur:
xfs_btree_del_cursor(rr->mcur, error);
err_cur:
xfs_btree_del_cursor(rmap_cur, error);
err_newbt:
xrep_newbt_cancel(&rr->new_btree);
return error;
}
/* Section (IV): Reaping the old btree. */
struct xrep_rmap_find_gaps {
struct xagb_bitmap rmap_gaps;
xfs_agblock_t next_agbno;
};
/* Subtract each free extent in the bnobt from the rmap gaps. */
STATIC int
xrep_rmap_find_freesp(
struct xfs_btree_cur *cur,
const struct xfs_alloc_rec_incore *rec,
void *priv)
{
struct xrep_rmap_find_gaps *rfg = priv;
return xagb_bitmap_clear(&rfg->rmap_gaps, rec->ar_startblock,
rec->ar_blockcount);
}
/* Record the free space we find, as part of cleaning out the btree. */
STATIC int
xrep_rmap_find_gaps(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_rmap_find_gaps *rfg = priv;
int error;
if (rec->rm_startblock > rfg->next_agbno) {
error = xagb_bitmap_set(&rfg->rmap_gaps, rfg->next_agbno,
rec->rm_startblock - rfg->next_agbno);
if (error)
return error;
}
rfg->next_agbno = max_t(xfs_agblock_t, rfg->next_agbno,
rec->rm_startblock + rec->rm_blockcount);
return 0;
}
/*
* Reap the old rmapbt blocks. Now that the rmapbt is fully rebuilt, we make
* a list of gaps in the rmap records and a list of the extents mentioned in
* the bnobt. Any block that's in the new rmapbt gap list but not mentioned
* in the bnobt is a block from the old rmapbt and can be removed.
*/
STATIC int
xrep_rmap_remove_old_tree(
struct xrep_rmap *rr)
{
struct xrep_rmap_find_gaps rfg = {
.next_agbno = 0,
};
struct xfs_scrub *sc = rr->sc;
struct xfs_agf *agf = sc->sa.agf_bp->b_addr;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_btree_cur *mcur;
xfs_agblock_t agend;
int error;
xagb_bitmap_init(&rfg.rmap_gaps);
/* Compute free space from the new rmapbt. */
mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, NULL, &rr->rmap_btree);
error = xfs_rmap_query_all(mcur, xrep_rmap_find_gaps, &rfg);
xfs_btree_del_cursor(mcur, error);
if (error)
goto out_bitmap;
/* Insert a record for space between the last rmap and EOAG. */
agend = be32_to_cpu(agf->agf_length);
if (rfg.next_agbno < agend) {
error = xagb_bitmap_set(&rfg.rmap_gaps, rfg.next_agbno,
agend - rfg.next_agbno);
if (error)
goto out_bitmap;
}
/* Compute free space from the existing bnobt. */
sc->sa.bno_cur = xfs_bnobt_init_cursor(sc->mp, sc->tp, sc->sa.agf_bp,
sc->sa.pag);
error = xfs_alloc_query_all(sc->sa.bno_cur, xrep_rmap_find_freesp,
&rfg);
xfs_btree_del_cursor(sc->sa.bno_cur, error);
sc->sa.bno_cur = NULL;
if (error)
goto out_bitmap;
/*
* Free the "free" blocks that the new rmapbt knows about but the bnobt
* doesn't--these are the old rmapbt blocks. Credit the old rmapbt
* block usage count back to the per-AG rmapbt reservation (and not
* fdblocks, since the rmap btree lives in free space) to keep the
* reservation and free space accounting correct.
*/
error = xrep_reap_agblocks(sc, &rfg.rmap_gaps,
&XFS_RMAP_OINFO_ANY_OWNER, XFS_AG_RESV_RMAPBT);
if (error)
goto out_bitmap;
/*
* Now that we've zapped all the old rmapbt blocks we can turn off
* the alternate height mechanism and reset the per-AG space
* reservation.
*/
pag->pagf_repair_rmap_level = 0;
sc->flags |= XREP_RESET_PERAG_RESV;
out_bitmap:
xagb_bitmap_destroy(&rfg.rmap_gaps);
return error;
}
static inline bool
xrep_rmapbt_want_live_update(
struct xchk_iscan *iscan,
const struct xfs_owner_info *oi)
{
if (xchk_iscan_aborted(iscan))
return false;
/*
* Before unlocking the AG header to perform the inode scan, we
* recorded reverse mappings for all AG metadata except for the OWN_AG
* metadata. IOWs, the in-memory btree knows about the AG headers, the
* two inode btrees, the CoW staging extents, and the refcount btrees.
* For these types of metadata, we need to record the live updates in
* the in-memory rmap btree.
*
* However, we do not scan the free space btrees or the AGFL until we
* have re-locked the AGF and are ready to reserve space for the new
* rmap btree, so we do not want live updates for OWN_AG metadata.
*/
if (XFS_RMAP_NON_INODE_OWNER(oi->oi_owner))
return oi->oi_owner != XFS_RMAP_OWN_AG;
/* Ignore updates to files that the scanner hasn't visited yet. */
return xchk_iscan_want_live_update(iscan, oi->oi_owner);
}
/*
* Apply a rmapbt update from the regular filesystem into our shadow btree.
* We're running from the thread that owns the AGF buffer and is generating
* the update, so we must be careful about which parts of the struct xrep_rmap
* that we change.
*/
static int
xrep_rmapbt_live_update(
struct notifier_block *nb,
unsigned long action,
void *data)
{
struct xfs_rmap_update_params *p = data;
struct xrep_rmap *rr;
struct xfs_mount *mp;
struct xfs_btree_cur *mcur;
struct xfs_trans *tp;
void *txcookie;
int error;
rr = container_of(nb, struct xrep_rmap, rhook.rmap_hook.nb);
mp = rr->sc->mp;
if (!xrep_rmapbt_want_live_update(&rr->iscan, &p->oinfo))
goto out_unlock;
trace_xrep_rmap_live_update(rr->sc->sa.pag, action, p);
error = xrep_trans_alloc_hook_dummy(mp, &txcookie, &tp);
if (error)
goto out_abort;
mutex_lock(&rr->lock);
mcur = xfs_rmapbt_mem_cursor(rr->sc->sa.pag, tp, &rr->rmap_btree);
error = __xfs_rmap_finish_intent(mcur, action, p->startblock,
p->blockcount, &p->oinfo, p->unwritten);
xfs_btree_del_cursor(mcur, error);
if (error)
goto out_cancel;
error = xfbtree_trans_commit(&rr->rmap_btree, tp);
if (error)
goto out_cancel;
xrep_trans_cancel_hook_dummy(&txcookie, tp);
mutex_unlock(&rr->lock);
return NOTIFY_DONE;
out_cancel:
xfbtree_trans_cancel(&rr->rmap_btree, tp);
xrep_trans_cancel_hook_dummy(&txcookie, tp);
out_abort:
mutex_unlock(&rr->lock);
xchk_iscan_abort(&rr->iscan);
out_unlock:
return NOTIFY_DONE;
}
/* Set up the filesystem scan components. */
STATIC int
xrep_rmap_setup_scan(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
int error;
mutex_init(&rr->lock);
/* Set up in-memory rmap btree */
error = xfs_rmapbt_mem_init(sc->mp, &rr->rmap_btree, sc->xmbtp,
sc->sa.pag->pag_agno);
if (error)
goto out_mutex;
/* Retry iget every tenth of a second for up to 30 seconds. */
xchk_iscan_start(sc, 30000, 100, &rr->iscan);
/*
* Hook into live rmap operations so that we can update our in-memory
* btree to reflect live changes on the filesystem. Since we drop the
* AGF buffer to scan all the inodes, we need this piece to avoid
* installing a stale btree.
*/
ASSERT(sc->flags & XCHK_FSGATES_RMAP);
xfs_rmap_hook_setup(&rr->rhook, xrep_rmapbt_live_update);
error = xfs_rmap_hook_add(sc->sa.pag, &rr->rhook);
if (error)
goto out_iscan;
return 0;
out_iscan:
xchk_iscan_teardown(&rr->iscan);
xfbtree_destroy(&rr->rmap_btree);
out_mutex:
mutex_destroy(&rr->lock);
return error;
}
/* Tear down scan components. */
STATIC void
xrep_rmap_teardown(
struct xrep_rmap *rr)
{
struct xfs_scrub *sc = rr->sc;
xchk_iscan_abort(&rr->iscan);
xfs_rmap_hook_del(sc->sa.pag, &rr->rhook);
xchk_iscan_teardown(&rr->iscan);
xfbtree_destroy(&rr->rmap_btree);
mutex_destroy(&rr->lock);
}
/* Repair the rmap btree for some AG. */
int
xrep_rmapbt(
struct xfs_scrub *sc)
{
struct xrep_rmap *rr = sc->buf;
int error;
error = xrep_rmap_setup_scan(rr);
if (error)
return error;
/*
* Collect rmaps for everything in this AG that isn't space metadata.
* These rmaps won't change even as we try to allocate blocks.
*/
error = xrep_rmap_find_rmaps(rr);
if (error)
goto out_records;
/* Rebuild the rmap information. */
error = xrep_rmap_build_new_tree(rr);
if (error)
goto out_records;
/* Kill the old tree. */
error = xrep_rmap_remove_old_tree(rr);
if (error)
goto out_records;
out_records:
xrep_rmap_teardown(rr);
return error;
}
|