1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MIN_HEAP_H
#define _LINUX_MIN_HEAP_H
#include <linux/bug.h>
#include <linux/string.h>
#include <linux/types.h>
/**
* Data structure to hold a min-heap.
* @nr: Number of elements currently in the heap.
* @size: Maximum number of elements that can be held in current storage.
* @data: Pointer to the start of array holding the heap elements.
* @preallocated: Start of the static preallocated array holding the heap elements.
*/
#define MIN_HEAP_PREALLOCATED(_type, _name, _nr) \
struct _name { \
int nr; \
int size; \
_type *data; \
_type preallocated[_nr]; \
}
#define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0)
typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char;
#define __minheap_cast(_heap) (typeof((_heap)->data[0]) *)
#define __minheap_obj_size(_heap) sizeof((_heap)->data[0])
/**
* struct min_heap_callbacks - Data/functions to customise the min_heap.
* @less: Partial order function for this heap.
* @swp: Swap elements function.
*/
struct min_heap_callbacks {
bool (*less)(const void *lhs, const void *rhs, void *args);
void (*swp)(void *lhs, void *rhs, void *args);
};
/**
* is_aligned - is this pointer & size okay for word-wide copying?
* @base: pointer to data
* @size: size of each element
* @align: required alignment (typically 4 or 8)
*
* Returns true if elements can be copied using word loads and stores.
* The size must be a multiple of the alignment, and the base address must
* be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
*
* For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
* to "if ((a | b) & mask)", so we do that by hand.
*/
__attribute_const__ __always_inline
static bool is_aligned(const void *base, size_t size, unsigned char align)
{
unsigned char lsbits = (unsigned char)size;
(void)base;
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
lsbits |= (unsigned char)(uintptr_t)base;
#endif
return (lsbits & (align - 1)) == 0;
}
/**
* swap_words_32 - swap two elements in 32-bit chunks
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size (must be a multiple of 4)
*
* Exchange the two objects in memory. This exploits base+index addressing,
* which basically all CPUs have, to minimize loop overhead computations.
*
* For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
* bottom of the loop, even though the zero flag is still valid from the
* subtract (since the intervening mov instructions don't alter the flags).
* Gcc 8.1.0 doesn't have that problem.
*/
static __always_inline
void swap_words_32(void *a, void *b, size_t n)
{
do {
u32 t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
} while (n);
}
/**
* swap_words_64 - swap two elements in 64-bit chunks
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size (must be a multiple of 8)
*
* Exchange the two objects in memory. This exploits base+index
* addressing, which basically all CPUs have, to minimize loop overhead
* computations.
*
* We'd like to use 64-bit loads if possible. If they're not, emulating
* one requires base+index+4 addressing which x86 has but most other
* processors do not. If CONFIG_64BIT, we definitely have 64-bit loads,
* but it's possible to have 64-bit loads without 64-bit pointers (e.g.
* x32 ABI). Are there any cases the kernel needs to worry about?
*/
static __always_inline
void swap_words_64(void *a, void *b, size_t n)
{
do {
#ifdef CONFIG_64BIT
u64 t = *(u64 *)(a + (n -= 8));
*(u64 *)(a + n) = *(u64 *)(b + n);
*(u64 *)(b + n) = t;
#else
/* Use two 32-bit transfers to avoid base+index+4 addressing */
u32 t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
t = *(u32 *)(a + (n -= 4));
*(u32 *)(a + n) = *(u32 *)(b + n);
*(u32 *)(b + n) = t;
#endif
} while (n);
}
/**
* swap_bytes - swap two elements a byte at a time
* @a: pointer to the first element to swap
* @b: pointer to the second element to swap
* @n: element size
*
* This is the fallback if alignment doesn't allow using larger chunks.
*/
static __always_inline
void swap_bytes(void *a, void *b, size_t n)
{
do {
char t = ((char *)a)[--n];
((char *)a)[n] = ((char *)b)[n];
((char *)b)[n] = t;
} while (n);
}
/*
* The values are arbitrary as long as they can't be confused with
* a pointer, but small integers make for the smallest compare
* instructions.
*/
#define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0)
#define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1)
#define SWAP_BYTES ((void (*)(void *, void *, void *))2)
/*
* Selects the appropriate swap function based on the element size.
*/
static __always_inline
void *select_swap_func(const void *base, size_t size)
{
if (is_aligned(base, size, 8))
return SWAP_WORDS_64;
else if (is_aligned(base, size, 4))
return SWAP_WORDS_32;
else
return SWAP_BYTES;
}
static __always_inline
void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args),
void *priv)
{
if (swap_func == SWAP_WORDS_64)
swap_words_64(a, b, size);
else if (swap_func == SWAP_WORDS_32)
swap_words_32(a, b, size);
else if (swap_func == SWAP_BYTES)
swap_bytes(a, b, size);
else
swap_func(a, b, priv);
}
/**
* parent - given the offset of the child, find the offset of the parent.
* @i: the offset of the heap element whose parent is sought. Non-zero.
* @lsbit: a precomputed 1-bit mask, equal to "size & -size"
* @size: size of each element
*
* In terms of array indexes, the parent of element j = @i/@size is simply
* (j-1)/2. But when working in byte offsets, we can't use implicit
* truncation of integer divides.
*
* Fortunately, we only need one bit of the quotient, not the full divide.
* @size has a least significant bit. That bit will be clear if @i is
* an even multiple of @size, and set if it's an odd multiple.
*
* Logically, we're doing "if (i & lsbit) i -= size;", but since the
* branch is unpredictable, it's done with a bit of clever branch-free
* code instead.
*/
__attribute_const__ __always_inline
static size_t parent(size_t i, unsigned int lsbit, size_t size)
{
i -= size;
i -= size & -(i & lsbit);
return i / 2;
}
/* Initialize a min-heap. */
static __always_inline
void __min_heap_init_inline(min_heap_char *heap, void *data, int size)
{
heap->nr = 0;
heap->size = size;
if (data)
heap->data = data;
else
heap->data = heap->preallocated;
}
#define min_heap_init_inline(_heap, _data, _size) \
__min_heap_init_inline((min_heap_char *)_heap, _data, _size)
/* Get the minimum element from the heap. */
static __always_inline
void *__min_heap_peek_inline(struct min_heap_char *heap)
{
return heap->nr ? heap->data : NULL;
}
#define min_heap_peek_inline(_heap) \
(__minheap_cast(_heap) __min_heap_peek_inline((min_heap_char *)_heap))
/* Check if the heap is full. */
static __always_inline
bool __min_heap_full_inline(min_heap_char *heap)
{
return heap->nr == heap->size;
}
#define min_heap_full_inline(_heap) \
__min_heap_full_inline((min_heap_char *)_heap)
/* Sift the element at pos down the heap. */
static __always_inline
void __min_heap_sift_down_inline(min_heap_char *heap, int pos, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
const unsigned long lsbit = elem_size & -elem_size;
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
/* pre-scale counters for performance */
size_t a = pos * elem_size;
size_t b, c, d;
size_t n = heap->nr * elem_size;
if (!swp)
swp = select_swap_func(data, elem_size);
/* Find the sift-down path all the way to the leaves. */
for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;)
b = func->less(data + c, data + d, args) ? c : d;
/* Special case for the last leaf with no sibling. */
if (d == n)
b = c;
/* Backtrack to the correct location. */
while (b != a && func->less(data + a, data + b, args))
b = parent(b, lsbit, elem_size);
/* Shift the element into its correct place. */
c = b;
while (b != a) {
b = parent(b, lsbit, elem_size);
do_swap(data + b, data + c, elem_size, swp, args);
}
}
#define min_heap_sift_down_inline(_heap, _pos, _func, _args) \
__min_heap_sift_down_inline((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), \
_func, _args)
/* Sift up ith element from the heap, O(log2(nr)). */
static __always_inline
void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
const unsigned long lsbit = elem_size & -elem_size;
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
/* pre-scale counters for performance */
size_t a = idx * elem_size, b;
if (!swp)
swp = select_swap_func(data, elem_size);
while (a) {
b = parent(a, lsbit, elem_size);
if (func->less(data + b, data + a, args))
break;
do_swap(data + a, data + b, elem_size, swp, args);
a = b;
}
}
#define min_heap_sift_up_inline(_heap, _idx, _func, _args) \
__min_heap_sift_up_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \
_func, _args)
/* Floyd's approach to heapification that is O(nr). */
static __always_inline
void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
int i;
for (i = heap->nr / 2 - 1; i >= 0; i--)
__min_heap_sift_down_inline(heap, i, elem_size, func, args);
}
#define min_heapify_all_inline(_heap, _func, _args) \
__min_heapify_all_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
/* Remove minimum element from the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return false;
/* Place last element at the root (position 0) and then sift down. */
heap->nr--;
memcpy(data, data + (heap->nr * elem_size), elem_size);
__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
return true;
}
#define min_heap_pop_inline(_heap, _func, _args) \
__min_heap_pop_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
/*
* Remove the minimum element and then push the given element. The
* implementation performs 1 sift (O(log2(nr))) and is therefore more
* efficient than a pop followed by a push that does 2.
*/
static __always_inline
void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
memcpy(heap->data, element, elem_size);
__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
}
#define min_heap_pop_push_inline(_heap, _element, _func, _args) \
__min_heap_pop_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
_func, _args)
/* Push an element on to the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
int pos;
if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
return false;
/* Place at the end of data. */
pos = heap->nr;
memcpy(data + (pos * elem_size), element, elem_size);
heap->nr++;
/* Sift child at pos up. */
__min_heap_sift_up_inline(heap, elem_size, pos, func, args);
return true;
}
#define min_heap_push_inline(_heap, _element, _func, _args) \
__min_heap_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
_func, _args)
/* Remove ith element from the heap, O(log2(nr)). */
static __always_inline
bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args)
{
void *data = heap->data;
void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
return false;
if (!swp)
swp = select_swap_func(data, elem_size);
/* Place last element at the root (position 0) and then sift down. */
heap->nr--;
if (idx == heap->nr)
return true;
do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args);
__min_heap_sift_up_inline(heap, elem_size, idx, func, args);
__min_heap_sift_down_inline(heap, idx, elem_size, func, args);
return true;
}
#define min_heap_del_inline(_heap, _idx, _func, _args) \
__min_heap_del_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, \
_func, _args)
void __min_heap_init(min_heap_char *heap, void *data, int size);
void *__min_heap_peek(struct min_heap_char *heap);
bool __min_heap_full(min_heap_char *heap);
void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args);
void __min_heapify_all(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __min_heap_pop(min_heap_char *heap, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
const struct min_heap_callbacks *func, void *args);
bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
const struct min_heap_callbacks *func, void *args);
#define min_heap_init(_heap, _data, _size) \
__min_heap_init((min_heap_char *)_heap, _data, _size)
#define min_heap_peek(_heap) \
(__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap))
#define min_heap_full(_heap) \
__min_heap_full((min_heap_char *)_heap)
#define min_heap_sift_down(_heap, _pos, _func, _args) \
__min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args)
#define min_heap_sift_up(_heap, _idx, _func, _args) \
__min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
#define min_heapify_all(_heap, _func, _args) \
__min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
#define min_heap_pop(_heap, _func, _args) \
__min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
#define min_heap_pop_push(_heap, _element, _func, _args) \
__min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), \
_func, _args)
#define min_heap_push(_heap, _element, _func, _args) \
__min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
#define min_heap_del(_heap, _idx, _func, _args) \
__min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
#endif /* _LINUX_MIN_HEAP_H */
|