summaryrefslogtreecommitdiff
path: root/include/linux/sched/mm.h
blob: 07bb8d4181d7ee6a03aeb3c7dea2a17773861c45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SCHED_MM_H
#define _LINUX_SCHED_MM_H

#include <linux/kernel.h>
#include <linux/atomic.h>
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/gfp.h>
#include <linux/sync_core.h>
#include <linux/sched/coredump.h>

/*
 * Routines for handling mm_structs
 */
extern struct mm_struct *mm_alloc(void);

/**
 * mmgrab() - Pin a &struct mm_struct.
 * @mm: The &struct mm_struct to pin.
 *
 * Make sure that @mm will not get freed even after the owning task
 * exits. This doesn't guarantee that the associated address space
 * will still exist later on and mmget_not_zero() has to be used before
 * accessing it.
 *
 * This is a preferred way to pin @mm for a longer/unbounded amount
 * of time.
 *
 * Use mmdrop() to release the reference acquired by mmgrab().
 *
 * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
 * of &mm_struct.mm_count vs &mm_struct.mm_users.
 */
static inline void mmgrab(struct mm_struct *mm)
{
	atomic_inc(&mm->mm_count);
}

static inline void smp_mb__after_mmgrab(void)
{
	smp_mb__after_atomic();
}

extern void __mmdrop(struct mm_struct *mm);

static inline void mmdrop(struct mm_struct *mm)
{
	/*
	 * The implicit full barrier implied by atomic_dec_and_test() is
	 * required by the membarrier system call before returning to
	 * user-space, after storing to rq->curr.
	 */
	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
		__mmdrop(mm);
}

#ifdef CONFIG_PREEMPT_RT
/*
 * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
 * by far the least expensive way to do that.
 */
static inline void __mmdrop_delayed(struct rcu_head *rhp)
{
	struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);

	__mmdrop(mm);
}

/*
 * Invoked from finish_task_switch(). Delegates the heavy lifting on RT
 * kernels via RCU.
 */
static inline void mmdrop_sched(struct mm_struct *mm)
{
	/* Provides a full memory barrier. See mmdrop() */
	if (atomic_dec_and_test(&mm->mm_count))
		call_rcu(&mm->delayed_drop, __mmdrop_delayed);
}
#else
static inline void mmdrop_sched(struct mm_struct *mm)
{
	mmdrop(mm);
}
#endif

/* Helpers for lazy TLB mm refcounting */
static inline void mmgrab_lazy_tlb(struct mm_struct *mm)
{
	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
		mmgrab(mm);
}

static inline void mmdrop_lazy_tlb(struct mm_struct *mm)
{
	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) {
		mmdrop(mm);
	} else {
		/*
		 * mmdrop_lazy_tlb must provide a full memory barrier, see the
		 * membarrier comment finish_task_switch which relies on this.
		 */
		smp_mb();
	}
}

static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm)
{
	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
		mmdrop_sched(mm);
	else
		smp_mb(); /* see mmdrop_lazy_tlb() above */
}

/**
 * mmget() - Pin the address space associated with a &struct mm_struct.
 * @mm: The address space to pin.
 *
 * Make sure that the address space of the given &struct mm_struct doesn't
 * go away. This does not protect against parts of the address space being
 * modified or freed, however.
 *
 * Never use this function to pin this address space for an
 * unbounded/indefinite amount of time.
 *
 * Use mmput() to release the reference acquired by mmget().
 *
 * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
 * of &mm_struct.mm_count vs &mm_struct.mm_users.
 */
static inline void mmget(struct mm_struct *mm)
{
	atomic_inc(&mm->mm_users);
}

static inline bool mmget_not_zero(struct mm_struct *mm)
{
	return atomic_inc_not_zero(&mm->mm_users);
}

/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
#ifdef CONFIG_MMU
/* same as above but performs the slow path from the async context. Can
 * be called from the atomic context as well
 */
void mmput_async(struct mm_struct *);
#endif

/* Grab a reference to a task's mm, if it is not already going away */
extern struct mm_struct *get_task_mm(struct task_struct *task);
/*
 * Grab a reference to a task's mm, if it is not already going away
 * and ptrace_may_access with the mode parameter passed to it
 * succeeds.
 */
extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
/* Remove the current tasks stale references to the old mm_struct on exit() */
extern void exit_mm_release(struct task_struct *, struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct on exec() */
extern void exec_mm_release(struct task_struct *, struct mm_struct *);

#ifdef CONFIG_MEMCG
extern void mm_update_next_owner(struct mm_struct *mm);
#else
static inline void mm_update_next_owner(struct mm_struct *mm)
{
}
#endif /* CONFIG_MEMCG */

#ifdef CONFIG_MMU
#ifndef arch_get_mmap_end
#define arch_get_mmap_end(addr, len, flags)	(TASK_SIZE)
#endif

#ifndef arch_get_mmap_base
#define arch_get_mmap_base(addr, base) (base)
#endif

extern void arch_pick_mmap_layout(struct mm_struct *mm,
				  struct rlimit *rlim_stack);

unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
		       unsigned long len, unsigned long pgoff,
		       unsigned long flags, vm_flags_t vm_flags);
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
			       unsigned long len, unsigned long pgoff,
			       unsigned long flags, vm_flags_t);

unsigned long mm_get_unmapped_area(struct mm_struct *mm, struct file *filp,
				   unsigned long addr, unsigned long len,
				   unsigned long pgoff, unsigned long flags);

unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm,
					   struct file *filp,
					   unsigned long addr,
					   unsigned long len,
					   unsigned long pgoff,
					   unsigned long flags,
					   vm_flags_t vm_flags);

unsigned long
generic_get_unmapped_area(struct file *filp, unsigned long addr,
			  unsigned long len, unsigned long pgoff,
			  unsigned long flags, vm_flags_t vm_flags);
unsigned long
generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
				  unsigned long len, unsigned long pgoff,
				  unsigned long flags, vm_flags_t vm_flags);
#else
static inline void arch_pick_mmap_layout(struct mm_struct *mm,
					 struct rlimit *rlim_stack) {}
#endif

static inline bool in_vfork(struct task_struct *tsk)
{
	bool ret;

	/*
	 * need RCU to access ->real_parent if CLONE_VM was used along with
	 * CLONE_PARENT.
	 *
	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
	 * imply CLONE_VM
	 *
	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
	 * ->real_parent is not necessarily the task doing vfork(), so in
	 * theory we can't rely on task_lock() if we want to dereference it.
	 *
	 * And in this case we can't trust the real_parent->mm == tsk->mm
	 * check, it can be false negative. But we do not care, if init or
	 * another oom-unkillable task does this it should blame itself.
	 */
	rcu_read_lock();
	ret = tsk->vfork_done &&
			rcu_dereference(tsk->real_parent)->mm == tsk->mm;
	rcu_read_unlock();

	return ret;
}

/*
 * Applies per-task gfp context to the given allocation flags.
 * PF_MEMALLOC_NOIO implies GFP_NOIO
 * PF_MEMALLOC_NOFS implies GFP_NOFS
 * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
 */
static inline gfp_t current_gfp_context(gfp_t flags)
{
	unsigned int pflags = READ_ONCE(current->flags);

	if (unlikely(pflags & (PF_MEMALLOC_NOIO |
			       PF_MEMALLOC_NOFS |
			       PF_MEMALLOC_NORECLAIM |
			       PF_MEMALLOC_NOWARN |
			       PF_MEMALLOC_PIN))) {
		/*
		 * Stronger flags before weaker flags:
		 * NORECLAIM implies NOIO, which in turn implies NOFS
		 */
		if (pflags & PF_MEMALLOC_NORECLAIM)
			flags &= ~__GFP_DIRECT_RECLAIM;
		else if (pflags & PF_MEMALLOC_NOIO)
			flags &= ~(__GFP_IO | __GFP_FS);
		else if (pflags & PF_MEMALLOC_NOFS)
			flags &= ~__GFP_FS;

		if (pflags & PF_MEMALLOC_NOWARN)
			flags |= __GFP_NOWARN;

		if (pflags & PF_MEMALLOC_PIN)
			flags &= ~__GFP_MOVABLE;
	}
	return flags;
}

#ifdef CONFIG_LOCKDEP
extern void __fs_reclaim_acquire(unsigned long ip);
extern void __fs_reclaim_release(unsigned long ip);
extern void fs_reclaim_acquire(gfp_t gfp_mask);
extern void fs_reclaim_release(gfp_t gfp_mask);
#else
static inline void __fs_reclaim_acquire(unsigned long ip) { }
static inline void __fs_reclaim_release(unsigned long ip) { }
static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
static inline void fs_reclaim_release(gfp_t gfp_mask) { }
#endif

/* Any memory-allocation retry loop should use
 * memalloc_retry_wait(), and pass the flags for the most
 * constrained allocation attempt that might have failed.
 * This provides useful documentation of where loops are,
 * and a central place to fine tune the waiting as the MM
 * implementation changes.
 */
static inline void memalloc_retry_wait(gfp_t gfp_flags)
{
	/* We use io_schedule_timeout because waiting for memory
	 * typically included waiting for dirty pages to be
	 * written out, which requires IO.
	 */
	__set_current_state(TASK_UNINTERRUPTIBLE);
	gfp_flags = current_gfp_context(gfp_flags);
	if (gfpflags_allow_blocking(gfp_flags) &&
	    !(gfp_flags & __GFP_NORETRY))
		/* Probably waited already, no need for much more */
		io_schedule_timeout(1);
	else
		/* Probably didn't wait, and has now released a lock,
		 * so now is a good time to wait
		 */
		io_schedule_timeout(HZ/50);
}

/**
 * might_alloc - Mark possible allocation sites
 * @gfp_mask: gfp_t flags that would be used to allocate
 *
 * Similar to might_sleep() and other annotations, this can be used in functions
 * that might allocate, but often don't. Compiles to nothing without
 * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
 */
static inline void might_alloc(gfp_t gfp_mask)
{
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);

	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
}

/**
 * memalloc_flags_save - Add a PF_* flag to current->flags, save old value
 *
 * This allows PF_* flags to be conveniently added, irrespective of current
 * value, and then the old version restored with memalloc_flags_restore().
 */
static inline unsigned memalloc_flags_save(unsigned flags)
{
	unsigned oldflags = ~current->flags & flags;
	current->flags |= flags;
	return oldflags;
}

static inline void memalloc_flags_restore(unsigned flags)
{
	current->flags &= ~flags;
}

/**
 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
 *
 * This functions marks the beginning of the GFP_NOIO allocation scope.
 * All further allocations will implicitly drop __GFP_IO flag and so
 * they are safe for the IO critical section from the allocation recursion
 * point of view. Use memalloc_noio_restore to end the scope with flags
 * returned by this function.
 *
 * Context: This function is safe to be used from any context.
 * Return: The saved flags to be passed to memalloc_noio_restore.
 */
static inline unsigned int memalloc_noio_save(void)
{
	return memalloc_flags_save(PF_MEMALLOC_NOIO);
}

/**
 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
 * @flags: Flags to restore.
 *
 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
 * Always make sure that the given flags is the return value from the
 * pairing memalloc_noio_save call.
 */
static inline void memalloc_noio_restore(unsigned int flags)
{
	memalloc_flags_restore(flags);
}

/**
 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
 *
 * This functions marks the beginning of the GFP_NOFS allocation scope.
 * All further allocations will implicitly drop __GFP_FS flag and so
 * they are safe for the FS critical section from the allocation recursion
 * point of view. Use memalloc_nofs_restore to end the scope with flags
 * returned by this function.
 *
 * Context: This function is safe to be used from any context.
 * Return: The saved flags to be passed to memalloc_nofs_restore.
 */
static inline unsigned int memalloc_nofs_save(void)
{
	return memalloc_flags_save(PF_MEMALLOC_NOFS);
}

/**
 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
 * @flags: Flags to restore.
 *
 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
 * Always make sure that the given flags is the return value from the
 * pairing memalloc_nofs_save call.
 */
static inline void memalloc_nofs_restore(unsigned int flags)
{
	memalloc_flags_restore(flags);
}

/**
 * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope.
 *
 * This function marks the beginning of the __GFP_MEMALLOC allocation scope.
 * All further allocations will implicitly add the __GFP_MEMALLOC flag, which
 * prevents entering reclaim and allows access to all memory reserves. This
 * should only be used when the caller guarantees the allocation will allow more
 * memory to be freed very shortly, i.e. it needs to allocate some memory in
 * the process of freeing memory, and cannot reclaim due to potential recursion.
 *
 * Users of this scope have to be extremely careful to not deplete the reserves
 * completely and implement a throttling mechanism which controls the
 * consumption of the reserve based on the amount of freed memory. Usage of a
 * pre-allocated pool (e.g. mempool) should be always considered before using
 * this scope.
 *
 * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC
 *
 * Context: This function should not be used in an interrupt context as that one
 *          does not give PF_MEMALLOC access to reserves.
 *          See __gfp_pfmemalloc_flags().
 * Return: The saved flags to be passed to memalloc_noreclaim_restore.
 */
static inline unsigned int memalloc_noreclaim_save(void)
{
	return memalloc_flags_save(PF_MEMALLOC);
}

/**
 * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope.
 * @flags: Flags to restore.
 *
 * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save
 * function. Always make sure that the given flags is the return value from the
 * pairing memalloc_noreclaim_save call.
 */
static inline void memalloc_noreclaim_restore(unsigned int flags)
{
	memalloc_flags_restore(flags);
}

/**
 * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope.
 *
 * This function marks the beginning of the ~__GFP_MOVABLE allocation scope.
 * All further allocations will implicitly remove the __GFP_MOVABLE flag, which
 * will constraint the allocations to zones that allow long term pinning, i.e.
 * not ZONE_MOVABLE zones.
 *
 * Return: The saved flags to be passed to memalloc_pin_restore.
 */
static inline unsigned int memalloc_pin_save(void)
{
	return memalloc_flags_save(PF_MEMALLOC_PIN);
}

/**
 * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope.
 * @flags: Flags to restore.
 *
 * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function.
 * Always make sure that the given flags is the return value from the pairing
 * memalloc_pin_save call.
 */
static inline void memalloc_pin_restore(unsigned int flags)
{
	memalloc_flags_restore(flags);
}

#ifdef CONFIG_MEMCG
DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
/**
 * set_active_memcg - Starts the remote memcg charging scope.
 * @memcg: memcg to charge.
 *
 * This function marks the beginning of the remote memcg charging scope. All the
 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
 * given memcg.
 *
 * Please, make sure that caller has a reference to the passed memcg structure,
 * so its lifetime is guaranteed to exceed the scope between two
 * set_active_memcg() calls.
 *
 * NOTE: This function can nest. Users must save the return value and
 * reset the previous value after their own charging scope is over.
 */
static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup *memcg)
{
	struct mem_cgroup *old;

	if (!in_task()) {
		old = this_cpu_read(int_active_memcg);
		this_cpu_write(int_active_memcg, memcg);
	} else {
		old = current->active_memcg;
		current->active_memcg = memcg;
	}

	return old;
}
#else
static inline struct mem_cgroup *
set_active_memcg(struct mem_cgroup *memcg)
{
	return NULL;
}
#endif

#ifdef CONFIG_MEMBARRIER
enum {
	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY		= (1U << 6),
	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ			= (1U << 7),
};

enum {
	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
	MEMBARRIER_FLAG_RSEQ		= (1U << 1),
};

#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
#include <asm/membarrier.h>
#endif

static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
{
	if (current->mm != mm)
		return;
	if (likely(!(atomic_read(&mm->membarrier_state) &
		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
		return;
	sync_core_before_usermode();
}

extern void membarrier_exec_mmap(struct mm_struct *mm);

extern void membarrier_update_current_mm(struct mm_struct *next_mm);

#else
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
					     struct mm_struct *next,
					     struct task_struct *tsk)
{
}
#endif
static inline void membarrier_exec_mmap(struct mm_struct *mm)
{
}
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
{
}
static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
{
}
#endif

#endif /* _LINUX_SCHED_MM_H */