summaryrefslogtreecommitdiff
path: root/kernel/bpf/log.c
blob: 2a243cf37c60b1dbca97817dcde61c68af9f5cd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 * Copyright (c) 2016 Facebook
 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
 */
#include <uapi/linux/btf.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bpf.h>
#include <linux/bpf_verifier.h>
#include <linux/math64.h>
#include <linux/string.h>

#define verbose(env, fmt, args...) bpf_verifier_log_write(env, fmt, ##args)

static bool bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
{
	/* ubuf and len_total should both be specified (or not) together */
	if (!!log->ubuf != !!log->len_total)
		return false;
	/* log buf without log_level is meaningless */
	if (log->ubuf && log->level == 0)
		return false;
	if (log->level & ~BPF_LOG_MASK)
		return false;
	if (log->len_total > UINT_MAX >> 2)
		return false;
	return true;
}

int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
		  char __user *log_buf, u32 log_size)
{
	log->level = log_level;
	log->ubuf = log_buf;
	log->len_total = log_size;

	/* log attributes have to be sane */
	if (!bpf_verifier_log_attr_valid(log))
		return -EINVAL;

	return 0;
}

static void bpf_vlog_update_len_max(struct bpf_verifier_log *log, u32 add_len)
{
	/* add_len includes terminal \0, so no need for +1. */
	u64 len = log->end_pos + add_len;

	/* log->len_max could be larger than our current len due to
	 * bpf_vlog_reset() calls, so we maintain the max of any length at any
	 * previous point
	 */
	if (len > UINT_MAX)
		log->len_max = UINT_MAX;
	else if (len > log->len_max)
		log->len_max = len;
}

void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
		       va_list args)
{
	u64 cur_pos;
	u32 new_n, n;

	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);

	if (log->level == BPF_LOG_KERNEL) {
		bool newline = n > 0 && log->kbuf[n - 1] == '\n';

		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
		return;
	}

	n += 1; /* include terminating zero */
	bpf_vlog_update_len_max(log, n);

	if (log->level & BPF_LOG_FIXED) {
		/* check if we have at least something to put into user buf */
		new_n = 0;
		if (log->end_pos < log->len_total) {
			new_n = min_t(u32, log->len_total - log->end_pos, n);
			log->kbuf[new_n - 1] = '\0';
		}

		cur_pos = log->end_pos;
		log->end_pos += n - 1; /* don't count terminating '\0' */

		if (log->ubuf && new_n &&
		    copy_to_user(log->ubuf + cur_pos, log->kbuf, new_n))
			goto fail;
	} else {
		u64 new_end, new_start;
		u32 buf_start, buf_end, new_n;

		new_end = log->end_pos + n;
		if (new_end - log->start_pos >= log->len_total)
			new_start = new_end - log->len_total;
		else
			new_start = log->start_pos;

		log->start_pos = new_start;
		log->end_pos = new_end - 1; /* don't count terminating '\0' */

		if (!log->ubuf)
			return;

		new_n = min(n, log->len_total);
		cur_pos = new_end - new_n;
		div_u64_rem(cur_pos, log->len_total, &buf_start);
		div_u64_rem(new_end, log->len_total, &buf_end);
		/* new_end and buf_end are exclusive indices, so if buf_end is
		 * exactly zero, then it actually points right to the end of
		 * ubuf and there is no wrap around
		 */
		if (buf_end == 0)
			buf_end = log->len_total;

		/* if buf_start > buf_end, we wrapped around;
		 * if buf_start == buf_end, then we fill ubuf completely; we
		 * can't have buf_start == buf_end to mean that there is
		 * nothing to write, because we always write at least
		 * something, even if terminal '\0'
		 */
		if (buf_start < buf_end) {
			/* message fits within contiguous chunk of ubuf */
			if (copy_to_user(log->ubuf + buf_start,
					 log->kbuf + n - new_n,
					 buf_end - buf_start))
				goto fail;
		} else {
			/* message wraps around the end of ubuf, copy in two chunks */
			if (copy_to_user(log->ubuf + buf_start,
					 log->kbuf + n - new_n,
					 log->len_total - buf_start))
				goto fail;
			if (copy_to_user(log->ubuf,
					 log->kbuf + n - buf_end,
					 buf_end))
				goto fail;
		}
	}

	return;
fail:
	log->ubuf = NULL;
}

void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos)
{
	char zero = 0;
	u32 pos;

	if (WARN_ON_ONCE(new_pos > log->end_pos))
		return;

	if (!bpf_verifier_log_needed(log) || log->level == BPF_LOG_KERNEL)
		return;

	/* if position to which we reset is beyond current log window,
	 * then we didn't preserve any useful content and should adjust
	 * start_pos to end up with an empty log (start_pos == end_pos)
	 */
	log->end_pos = new_pos;
	if (log->end_pos < log->start_pos)
		log->start_pos = log->end_pos;

	if (!log->ubuf)
		return;

	if (log->level & BPF_LOG_FIXED)
		pos = log->end_pos + 1;
	else
		div_u64_rem(new_pos, log->len_total, &pos);

	if (pos < log->len_total && put_user(zero, log->ubuf + pos))
		log->ubuf = NULL;
}

static void bpf_vlog_reverse_kbuf(char *buf, int len)
{
	int i, j;

	for (i = 0, j = len - 1; i < j; i++, j--)
		swap(buf[i], buf[j]);
}

static int bpf_vlog_reverse_ubuf(struct bpf_verifier_log *log, int start, int end)
{
	/* we split log->kbuf into two equal parts for both ends of array */
	int n = sizeof(log->kbuf) / 2, nn;
	char *lbuf = log->kbuf, *rbuf = log->kbuf + n;

	/* Read ubuf's section [start, end) two chunks at a time, from left
	 * and right side; within each chunk, swap all the bytes; after that
	 * reverse the order of lbuf and rbuf and write result back to ubuf.
	 * This way we'll end up with swapped contents of specified
	 * [start, end) ubuf segment.
	 */
	while (end - start > 1) {
		nn = min(n, (end - start ) / 2);

		if (copy_from_user(lbuf, log->ubuf + start, nn))
			return -EFAULT;
		if (copy_from_user(rbuf, log->ubuf + end - nn, nn))
			return -EFAULT;

		bpf_vlog_reverse_kbuf(lbuf, nn);
		bpf_vlog_reverse_kbuf(rbuf, nn);

		/* we write lbuf to the right end of ubuf, while rbuf to the
		 * left one to end up with properly reversed overall ubuf
		 */
		if (copy_to_user(log->ubuf + start, rbuf, nn))
			return -EFAULT;
		if (copy_to_user(log->ubuf + end - nn, lbuf, nn))
			return -EFAULT;

		start += nn;
		end -= nn;
	}

	return 0;
}

int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual)
{
	u32 sublen;
	int err;

	*log_size_actual = 0;
	if (!log || log->level == 0 || log->level == BPF_LOG_KERNEL)
		return 0;

	if (!log->ubuf)
		goto skip_log_rotate;
	/* If we never truncated log, there is nothing to move around. */
	if (log->start_pos == 0)
		goto skip_log_rotate;

	/* Otherwise we need to rotate log contents to make it start from the
	 * buffer beginning and be a continuous zero-terminated string. Note
	 * that if log->start_pos != 0 then we definitely filled up entire log
	 * buffer with no gaps, and we just need to shift buffer contents to
	 * the left by (log->start_pos % log->len_total) bytes.
	 *
	 * Unfortunately, user buffer could be huge and we don't want to
	 * allocate temporary kernel memory of the same size just to shift
	 * contents in a straightforward fashion. Instead, we'll be clever and
	 * do in-place array rotation. This is a leetcode-style problem, which
	 * could be solved by three rotations.
	 *
	 * Let's say we have log buffer that has to be shifted left by 7 bytes
	 * (spaces and vertical bar is just for demonstrative purposes):
	 *   E F G H I J K | A B C D
	 *
	 * First, we reverse entire array:
	 *   D C B A | K J I H G F E
	 *
	 * Then we rotate first 4 bytes (DCBA) and separately last 7 bytes
	 * (KJIHGFE), resulting in a properly rotated array:
	 *   A B C D | E F G H I J K
	 *
	 * We'll utilize log->kbuf to read user memory chunk by chunk, swap
	 * bytes, and write them back. Doing it byte-by-byte would be
	 * unnecessarily inefficient. Altogether we are going to read and
	 * write each byte twice, for total 4 memory copies between kernel and
	 * user space.
	 */

	/* length of the chopped off part that will be the beginning;
	 * len(ABCD) in the example above
	 */
	div_u64_rem(log->start_pos, log->len_total, &sublen);
	sublen = log->len_total - sublen;

	err = bpf_vlog_reverse_ubuf(log, 0, log->len_total);
	err = err ?: bpf_vlog_reverse_ubuf(log, 0, sublen);
	err = err ?: bpf_vlog_reverse_ubuf(log, sublen, log->len_total);
	if (err)
		log->ubuf = NULL;

skip_log_rotate:
	*log_size_actual = log->len_max;

	/* properly initialized log has either both ubuf!=NULL and len_total>0
	 * or ubuf==NULL and len_total==0, so if this condition doesn't hold,
	 * we got a fault somewhere along the way, so report it back
	 */
	if (!!log->ubuf != !!log->len_total)
		return -EFAULT;

	/* did truncation actually happen? */
	if (log->ubuf && log->len_max > log->len_total)
		return -ENOSPC;

	return 0;
}

/* log_level controls verbosity level of eBPF verifier.
 * bpf_verifier_log_write() is used to dump the verification trace to the log,
 * so the user can figure out what's wrong with the program
 */
__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
					   const char *fmt, ...)
{
	va_list args;

	if (!bpf_verifier_log_needed(&env->log))
		return;

	va_start(args, fmt);
	bpf_verifier_vlog(&env->log, fmt, args);
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_verifier_log_write);

__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
			    const char *fmt, ...)
{
	va_list args;

	if (!bpf_verifier_log_needed(log))
		return;

	va_start(args, fmt);
	bpf_verifier_vlog(log, fmt, args);
	va_end(args);
}
EXPORT_SYMBOL_GPL(bpf_log);

static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
{
	const struct bpf_line_info *linfo;
	const struct bpf_prog *prog;
	u32 nr_linfo;
	int l, r, m;

	prog = env->prog;
	nr_linfo = prog->aux->nr_linfo;

	if (!nr_linfo || insn_off >= prog->len)
		return NULL;

	linfo = prog->aux->linfo;
	/* Loop invariant: linfo[l].insn_off <= insns_off.
	 * linfo[0].insn_off == 0 which always satisfies above condition.
	 * Binary search is searching for rightmost linfo entry that satisfies
	 * the above invariant, giving us the desired record that covers given
	 * instruction offset.
	 */
	l = 0;
	r = nr_linfo - 1;
	while (l < r) {
		/* (r - l + 1) / 2 means we break a tie to the right, so if:
		 * l=1, r=2, linfo[l].insn_off <= insn_off, linfo[r].insn_off > insn_off,
		 * then m=2, we see that linfo[m].insn_off > insn_off, and so
		 * r becomes 1 and we exit the loop with correct l==1.
		 * If the tie was broken to the left, m=1 would end us up in
		 * an endless loop where l and m stay at 1 and r stays at 2.
		 */
		m = l + (r - l + 1) / 2;
		if (linfo[m].insn_off <= insn_off)
			l = m;
		else
			r = m - 1;
	}

	return &linfo[l];
}

static const char *ltrim(const char *s)
{
	while (isspace(*s))
		s++;

	return s;
}

__printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
				  u32 insn_off,
				  const char *prefix_fmt, ...)
{
	const struct bpf_line_info *linfo, *prev_linfo;
	const struct btf *btf;
	const char *s, *fname;

	if (!bpf_verifier_log_needed(&env->log))
		return;

	prev_linfo = env->prev_linfo;
	linfo = find_linfo(env, insn_off);
	if (!linfo || linfo == prev_linfo)
		return;

	/* It often happens that two separate linfo records point to the same
	 * source code line, but have differing column numbers. Given verifier
	 * log doesn't emit column information, from user perspective we just
	 * end up emitting the same source code line twice unnecessarily.
	 * So instead check that previous and current linfo record point to
	 * the same file (file_name_offs match) and the same line number, and
	 * avoid emitting duplicated source code line in such case.
	 */
	if (prev_linfo && linfo->file_name_off == prev_linfo->file_name_off &&
	    BPF_LINE_INFO_LINE_NUM(linfo->line_col) == BPF_LINE_INFO_LINE_NUM(prev_linfo->line_col))
		return;

	if (prefix_fmt) {
		va_list args;

		va_start(args, prefix_fmt);
		bpf_verifier_vlog(&env->log, prefix_fmt, args);
		va_end(args);
	}

	btf = env->prog->aux->btf;
	s = ltrim(btf_name_by_offset(btf, linfo->line_off));
	verbose(env, "%s", s); /* source code line */

	s = btf_name_by_offset(btf, linfo->file_name_off);
	/* leave only file name */
	fname = strrchr(s, '/');
	fname = fname ? fname + 1 : s;
	verbose(env, " @ %s:%u\n", fname, BPF_LINE_INFO_LINE_NUM(linfo->line_col));

	env->prev_linfo = linfo;
}

static const char *btf_type_name(const struct btf *btf, u32 id)
{
	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
}

/* string representation of 'enum bpf_reg_type'
 *
 * Note that reg_type_str() can not appear more than once in a single verbose()
 * statement.
 */
const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type)
{
	char postfix[16] = {0}, prefix[64] = {0};
	static const char * const str[] = {
		[NOT_INIT]		= "?",
		[SCALAR_VALUE]		= "scalar",
		[PTR_TO_CTX]		= "ctx",
		[CONST_PTR_TO_MAP]	= "map_ptr",
		[PTR_TO_MAP_VALUE]	= "map_value",
		[PTR_TO_STACK]		= "fp",
		[PTR_TO_PACKET]		= "pkt",
		[PTR_TO_PACKET_META]	= "pkt_meta",
		[PTR_TO_PACKET_END]	= "pkt_end",
		[PTR_TO_FLOW_KEYS]	= "flow_keys",
		[PTR_TO_SOCKET]		= "sock",
		[PTR_TO_SOCK_COMMON]	= "sock_common",
		[PTR_TO_TCP_SOCK]	= "tcp_sock",
		[PTR_TO_TP_BUFFER]	= "tp_buffer",
		[PTR_TO_XDP_SOCK]	= "xdp_sock",
		[PTR_TO_BTF_ID]		= "ptr_",
		[PTR_TO_MEM]		= "mem",
		[PTR_TO_ARENA]		= "arena",
		[PTR_TO_BUF]		= "buf",
		[PTR_TO_FUNC]		= "func",
		[PTR_TO_MAP_KEY]	= "map_key",
		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
	};

	if (type & PTR_MAYBE_NULL) {
		if (base_type(type) == PTR_TO_BTF_ID)
			strncpy(postfix, "or_null_", 16);
		else
			strncpy(postfix, "_or_null", 16);
	}

	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
		 type & MEM_RDONLY ? "rdonly_" : "",
		 type & MEM_RINGBUF ? "ringbuf_" : "",
		 type & MEM_USER ? "user_" : "",
		 type & MEM_PERCPU ? "percpu_" : "",
		 type & MEM_RCU ? "rcu_" : "",
		 type & PTR_UNTRUSTED ? "untrusted_" : "",
		 type & PTR_TRUSTED ? "trusted_" : ""
	);

	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
		 prefix, str[base_type(type)], postfix);
	return env->tmp_str_buf;
}

const char *dynptr_type_str(enum bpf_dynptr_type type)
{
	switch (type) {
	case BPF_DYNPTR_TYPE_LOCAL:
		return "local";
	case BPF_DYNPTR_TYPE_RINGBUF:
		return "ringbuf";
	case BPF_DYNPTR_TYPE_SKB:
		return "skb";
	case BPF_DYNPTR_TYPE_XDP:
		return "xdp";
	case BPF_DYNPTR_TYPE_INVALID:
		return "<invalid>";
	default:
		WARN_ONCE(1, "unknown dynptr type %d\n", type);
		return "<unknown>";
	}
}

const char *iter_type_str(const struct btf *btf, u32 btf_id)
{
	if (!btf || btf_id == 0)
		return "<invalid>";

	/* we already validated that type is valid and has conforming name */
	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
}

const char *iter_state_str(enum bpf_iter_state state)
{
	switch (state) {
	case BPF_ITER_STATE_ACTIVE:
		return "active";
	case BPF_ITER_STATE_DRAINED:
		return "drained";
	case BPF_ITER_STATE_INVALID:
		return "<invalid>";
	default:
		WARN_ONCE(1, "unknown iter state %d\n", state);
		return "<unknown>";
	}
}

static char slot_type_char[] = {
	[STACK_INVALID]	= '?',
	[STACK_SPILL]	= 'r',
	[STACK_MISC]	= 'm',
	[STACK_ZERO]	= '0',
	[STACK_DYNPTR]	= 'd',
	[STACK_ITER]	= 'i',
};

static void print_liveness(struct bpf_verifier_env *env,
			   enum bpf_reg_liveness live)
{
	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
	    verbose(env, "_");
	if (live & REG_LIVE_READ)
		verbose(env, "r");
	if (live & REG_LIVE_WRITTEN)
		verbose(env, "w");
	if (live & REG_LIVE_DONE)
		verbose(env, "D");
}

#define UNUM_MAX_DECIMAL U16_MAX
#define SNUM_MAX_DECIMAL S16_MAX
#define SNUM_MIN_DECIMAL S16_MIN

static bool is_unum_decimal(u64 num)
{
	return num <= UNUM_MAX_DECIMAL;
}

static bool is_snum_decimal(s64 num)
{
	return num >= SNUM_MIN_DECIMAL && num <= SNUM_MAX_DECIMAL;
}

static void verbose_unum(struct bpf_verifier_env *env, u64 num)
{
	if (is_unum_decimal(num))
		verbose(env, "%llu", num);
	else
		verbose(env, "%#llx", num);
}

static void verbose_snum(struct bpf_verifier_env *env, s64 num)
{
	if (is_snum_decimal(num))
		verbose(env, "%lld", num);
	else
		verbose(env, "%#llx", num);
}

int tnum_strn(char *str, size_t size, struct tnum a)
{
	/* print as a constant, if tnum is fully known */
	if (a.mask == 0) {
		if (is_unum_decimal(a.value))
			return snprintf(str, size, "%llu", a.value);
		else
			return snprintf(str, size, "%#llx", a.value);
	}
	return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
}
EXPORT_SYMBOL_GPL(tnum_strn);

static void print_scalar_ranges(struct bpf_verifier_env *env,
				const struct bpf_reg_state *reg,
				const char **sep)
{
	/* For signed ranges, we want to unify 64-bit and 32-bit values in the
	 * output as much as possible, but there is a bit of a complication.
	 * If we choose to print values as decimals, this is natural to do,
	 * because negative 64-bit and 32-bit values >= -S32_MIN have the same
	 * representation due to sign extension. But if we choose to print
	 * them in hex format (see is_snum_decimal()), then sign extension is
	 * misleading.
	 * E.g., smin=-2 and smin32=-2 are exactly the same in decimal, but in
	 * hex they will be smin=0xfffffffffffffffe and smin32=0xfffffffe, two
	 * very different numbers.
	 * So we avoid sign extension if we choose to print values in hex.
	 */
	struct {
		const char *name;
		u64 val;
		bool omit;
	} minmaxs[] = {
		{"smin",   reg->smin_value,         reg->smin_value == S64_MIN},
		{"smax",   reg->smax_value,         reg->smax_value == S64_MAX},
		{"umin",   reg->umin_value,         reg->umin_value == 0},
		{"umax",   reg->umax_value,         reg->umax_value == U64_MAX},
		{"smin32",
		 is_snum_decimal((s64)reg->s32_min_value)
			 ? (s64)reg->s32_min_value
			 : (u32)reg->s32_min_value, reg->s32_min_value == S32_MIN},
		{"smax32",
		 is_snum_decimal((s64)reg->s32_max_value)
			 ? (s64)reg->s32_max_value
			 : (u32)reg->s32_max_value, reg->s32_max_value == S32_MAX},
		{"umin32", reg->u32_min_value,      reg->u32_min_value == 0},
		{"umax32", reg->u32_max_value,      reg->u32_max_value == U32_MAX},
	}, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)];
	bool neg1, neg2;

	for (m1 = &minmaxs[0]; m1 < mend; m1++) {
		if (m1->omit)
			continue;

		neg1 = m1->name[0] == 's' && (s64)m1->val < 0;

		verbose(env, "%s%s=", *sep, m1->name);
		*sep = ",";

		for (m2 = m1 + 2; m2 < mend; m2 += 2) {
			if (m2->omit || m2->val != m1->val)
				continue;
			/* don't mix negatives with positives */
			neg2 = m2->name[0] == 's' && (s64)m2->val < 0;
			if (neg2 != neg1)
				continue;
			m2->omit = true;
			verbose(env, "%s=", m2->name);
		}

		if (m1->name[0] == 's')
			verbose_snum(env, m1->val);
		else
			verbose_unum(env, m1->val);
	}
}

static bool type_is_map_ptr(enum bpf_reg_type t) {
	switch (base_type(t)) {
	case CONST_PTR_TO_MAP:
	case PTR_TO_MAP_KEY:
	case PTR_TO_MAP_VALUE:
		return true;
	default:
		return false;
	}
}

/*
 * _a stands for append, was shortened to avoid multiline statements below.
 * This macro is used to output a comma separated list of attributes.
 */
#define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, ##__VA_ARGS__); sep = ","; })

static void print_reg_state(struct bpf_verifier_env *env,
			    const struct bpf_func_state *state,
			    const struct bpf_reg_state *reg)
{
	enum bpf_reg_type t;
	const char *sep = "";

	t = reg->type;
	if (t == SCALAR_VALUE && reg->precise)
		verbose(env, "P");
	if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) {
		/* reg->off should be 0 for SCALAR_VALUE */
		verbose_snum(env, reg->var_off.value + reg->off);
		return;
	}

	verbose(env, "%s", reg_type_str(env, t));
	if (t == PTR_TO_ARENA)
		return;
	if (t == PTR_TO_STACK) {
		if (state->frameno != reg->frameno)
			verbose(env, "[%d]", reg->frameno);
		if (tnum_is_const(reg->var_off)) {
			verbose_snum(env, reg->var_off.value + reg->off);
			return;
		}
	}
	if (base_type(t) == PTR_TO_BTF_ID)
		verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
	verbose(env, "(");
	if (reg->id)
		verbose_a("id=%d", reg->id);
	if (reg->ref_obj_id)
		verbose_a("ref_obj_id=%d", reg->ref_obj_id);
	if (type_is_non_owning_ref(reg->type))
		verbose_a("%s", "non_own_ref");
	if (type_is_map_ptr(t)) {
		if (reg->map_ptr->name[0])
			verbose_a("map=%s", reg->map_ptr->name);
		verbose_a("ks=%d,vs=%d",
			  reg->map_ptr->key_size,
			  reg->map_ptr->value_size);
	}
	if (t != SCALAR_VALUE && reg->off) {
		verbose_a("off=");
		verbose_snum(env, reg->off);
	}
	if (type_is_pkt_pointer(t)) {
		verbose_a("r=");
		verbose_unum(env, reg->range);
	}
	if (base_type(t) == PTR_TO_MEM) {
		verbose_a("sz=");
		verbose_unum(env, reg->mem_size);
	}
	if (t == CONST_PTR_TO_DYNPTR)
		verbose_a("type=%s",  dynptr_type_str(reg->dynptr.type));
	if (tnum_is_const(reg->var_off)) {
		/* a pointer register with fixed offset */
		if (reg->var_off.value) {
			verbose_a("imm=");
			verbose_snum(env, reg->var_off.value);
		}
	} else {
		print_scalar_ranges(env, reg, &sep);
		if (!tnum_is_unknown(reg->var_off)) {
			char tn_buf[48];

			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
			verbose_a("var_off=%s", tn_buf);
		}
	}
	verbose(env, ")");
}

void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state,
			  bool print_all)
{
	const struct bpf_reg_state *reg;
	int i;

	if (state->frameno)
		verbose(env, " frame%d:", state->frameno);
	for (i = 0; i < MAX_BPF_REG; i++) {
		reg = &state->regs[i];
		if (reg->type == NOT_INIT)
			continue;
		if (!print_all && !reg_scratched(env, i))
			continue;
		verbose(env, " R%d", i);
		print_liveness(env, reg->live);
		verbose(env, "=");
		print_reg_state(env, state, reg);
	}
	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
		char types_buf[BPF_REG_SIZE + 1];
		const char *sep = "";
		bool valid = false;
		u8 slot_type;
		int j;

		if (!print_all && !stack_slot_scratched(env, i))
			continue;

		for (j = 0; j < BPF_REG_SIZE; j++) {
			slot_type = state->stack[i].slot_type[j];
			if (slot_type != STACK_INVALID)
				valid = true;
			types_buf[j] = slot_type_char[slot_type];
		}
		types_buf[BPF_REG_SIZE] = 0;
		if (!valid)
			continue;

		reg = &state->stack[i].spilled_ptr;
		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
		case STACK_SPILL:
			/* print MISC/ZERO/INVALID slots above subreg spill */
			for (j = 0; j < BPF_REG_SIZE; j++)
				if (state->stack[i].slot_type[j] == STACK_SPILL)
					break;
			types_buf[j] = '\0';

			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
			print_liveness(env, reg->live);
			verbose(env, "=%s", types_buf);
			print_reg_state(env, state, reg);
			break;
		case STACK_DYNPTR:
			/* skip to main dynptr slot */
			i += BPF_DYNPTR_NR_SLOTS - 1;
			reg = &state->stack[i].spilled_ptr;

			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
			print_liveness(env, reg->live);
			verbose(env, "=dynptr_%s(", dynptr_type_str(reg->dynptr.type));
			if (reg->id)
				verbose_a("id=%d", reg->id);
			if (reg->ref_obj_id)
				verbose_a("ref_id=%d", reg->ref_obj_id);
			if (reg->dynptr_id)
				verbose_a("dynptr_id=%d", reg->dynptr_id);
			verbose(env, ")");
			break;
		case STACK_ITER:
			/* only main slot has ref_obj_id set; skip others */
			if (!reg->ref_obj_id)
				continue;

			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
			print_liveness(env, reg->live);
			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
				iter_type_str(reg->iter.btf, reg->iter.btf_id),
				reg->ref_obj_id, iter_state_str(reg->iter.state),
				reg->iter.depth);
			break;
		case STACK_MISC:
		case STACK_ZERO:
		default:
			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
			print_liveness(env, reg->live);
			verbose(env, "=%s", types_buf);
			break;
		}
	}
	if (state->acquired_refs && state->refs[0].id) {
		verbose(env, " refs=%d", state->refs[0].id);
		for (i = 1; i < state->acquired_refs; i++)
			if (state->refs[i].id)
				verbose(env, ",%d", state->refs[i].id);
	}
	if (state->in_callback_fn)
		verbose(env, " cb");
	if (state->in_async_callback_fn)
		verbose(env, " async_cb");
	verbose(env, "\n");
	if (!print_all)
		mark_verifier_state_clean(env);
}

static inline u32 vlog_alignment(u32 pos)
{
	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
}

void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state)
{
	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
		/* remove new line character */
		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
	} else {
		verbose(env, "%d:", env->insn_idx);
	}
	print_verifier_state(env, state, false);
}