summaryrefslogtreecommitdiff
path: root/kernel/sched/pelt.c
blob: ead6d8b4a8b84fead75424af56597a67d03cceb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// SPDX-License-Identifier: GPL-2.0
/*
 * Per Entity Load Tracking
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
 *
 *  Move PELT related code from fair.c into this pelt.c file
 *  Author: Vincent Guittot <vincent.guittot@linaro.org>
 */

#include <linux/sched.h>
#include "sched.h"
#include "sched-pelt.h"
#include "pelt.h"

/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static u64 decay_load(u64 val, u64 n)
{
	unsigned int local_n;

	if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
	}

	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
}

static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
{
	u32 c1, c2, c3 = d3; /* y^0 == 1 */

	/*
	 * c1 = d1 y^p
	 */
	c1 = decay_load((u64)d1, periods);

	/*
	 *            p-1
	 * c2 = 1024 \Sum y^n
	 *            n=1
	 *
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
	 *              n=0        n=p
	 */
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;

	return c1 + c2 + c3;
}

#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)

/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
 *
 *    = u y^p +					(Step 1)
 *
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
	       unsigned long load, unsigned long runnable, int running)
{
	unsigned long scale_freq, scale_cpu;
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
	u64 periods;

	scale_freq = arch_scale_freq_capacity(cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
		sa->runnable_load_sum =
			decay_load(sa->runnable_load_sum, periods);
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
	if (load)
		sa->load_sum += load * contrib;
	if (runnable)
		sa->runnable_load_sum += runnable * contrib;
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int
___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
		  unsigned long load, unsigned long runnable, int running)
{
	u64 delta;

	delta = now - sa->last_update_time;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_update_time = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;

	sa->last_update_time += delta << 10;

	/*
	 * running is a subset of runnable (weight) so running can't be set if
	 * runnable is clear. But there are some corner cases where the current
	 * se has been already dequeued but cfs_rq->curr still points to it.
	 * This means that weight will be 0 but not running for a sched_entity
	 * but also for a cfs_rq if the latter becomes idle. As an example,
	 * this happens during idle_balance() which calls
	 * update_blocked_averages()
	 */
	if (!load)
		runnable = running = 0;

	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
		return 0;

	return 1;
}

static __always_inline void
___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
{
	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;

	/*
	 * Step 2: update *_avg.
	 */
	sa->load_avg = div_u64(load * sa->load_sum, divider);
	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
	sa->util_avg = sa->util_sum / divider;
}

/*
 * sched_entity:
 *
 *   task:
 *     se_runnable() == se_weight()
 *
 *   group: [ see update_cfs_group() ]
 *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
 *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
 *
 *   load_sum := runnable_sum
 *   load_avg = se_weight(se) * runnable_avg
 *
 *   runnable_load_sum := runnable_sum
 *   runnable_load_avg = se_runnable(se) * runnable_avg
 *
 * XXX collapse load_sum and runnable_load_sum
 *
 * cfq_rq:
 *
 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
 *   load_avg = \Sum se->avg.load_avg
 *
 *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
 *   runnable_load_avg = \Sum se->avg.runable_load_avg
 */

int __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
		return 1;
	}

	return 0;
}

int __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
				cfs_rq->curr == se)) {

		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
		cfs_se_util_change(&se->avg);
		return 1;
	}

	return 0;
}

int __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
	if (___update_load_sum(now, cpu, &cfs_rq->avg,
				scale_load_down(cfs_rq->load.weight),
				scale_load_down(cfs_rq->runnable_weight),
				cfs_rq->curr != NULL)) {

		___update_load_avg(&cfs_rq->avg, 1, 1);
		return 1;
	}

	return 0;
}

/*
 * rt_rq:
 *
 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 *   util_sum = cpu_scale * load_sum
 *   runnable_load_sum = load_sum
 *
 *   load_avg and runnable_load_avg are not supported and meaningless.
 *
 */

int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
{
	if (___update_load_sum(now, rq->cpu, &rq->avg_rt,
				running,
				running,
				running)) {

		___update_load_avg(&rq->avg_rt, 1, 1);
		return 1;
	}

	return 0;
}

/*
 * dl_rq:
 *
 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 *   util_sum = cpu_scale * load_sum
 *   runnable_load_sum = load_sum
 *
 */

int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
{
	if (___update_load_sum(now, rq->cpu, &rq->avg_dl,
				running,
				running,
				running)) {

		___update_load_avg(&rq->avg_dl, 1, 1);
		return 1;
	}

	return 0;
}

#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
/*
 * irq:
 *
 *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
 *   util_sum = cpu_scale * load_sum
 *   runnable_load_sum = load_sum
 *
 */

int update_irq_load_avg(struct rq *rq, u64 running)
{
	int ret = 0;
	/*
	 * We know the time that has been used by interrupt since last update
	 * but we don't when. Let be pessimistic and assume that interrupt has
	 * happened just before the update. This is not so far from reality
	 * because interrupt will most probably wake up task and trig an update
	 * of rq clock during which the metric si updated.
	 * We start to decay with normal context time and then we add the
	 * interrupt context time.
	 * We can safely remove running from rq->clock because
	 * rq->clock += delta with delta >= running
	 */
	ret = ___update_load_sum(rq->clock - running, rq->cpu, &rq->avg_irq,
				0,
				0,
				0);
	ret += ___update_load_sum(rq->clock, rq->cpu, &rq->avg_irq,
				1,
				1,
				1);

	if (ret)
		___update_load_avg(&rq->avg_irq, 1, 1);

	return ret;
}
#endif