summaryrefslogtreecommitdiff
path: root/kernel/time/timekeeping.c
blob: 3d128825d343743349637b28fc79e254bc81e8bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
// SPDX-License-Identifier: GPL-2.0
/*
 *  Kernel timekeeping code and accessor functions. Based on code from
 *  timer.c, moved in commit 8524070b7982.
 */
#include <linux/timekeeper_internal.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/clock.h>
#include <linux/syscore_ops.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/tick.h>
#include <linux/stop_machine.h>
#include <linux/pvclock_gtod.h>
#include <linux/compiler.h>
#include <linux/audit.h>
#include <linux/random.h>

#include "tick-internal.h"
#include "ntp_internal.h"
#include "timekeeping_internal.h"

#define TK_CLEAR_NTP		(1 << 0)
#define TK_CLOCK_WAS_SET	(1 << 1)

#define TK_UPDATE_ALL		(TK_CLEAR_NTP | TK_CLOCK_WAS_SET)

enum timekeeping_adv_mode {
	/* Update timekeeper when a tick has passed */
	TK_ADV_TICK,

	/* Update timekeeper on a direct frequency change */
	TK_ADV_FREQ
};

/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
struct tk_data {
	seqcount_raw_spinlock_t	seq;
	struct timekeeper	timekeeper;
	struct timekeeper	shadow_timekeeper;
	raw_spinlock_t		lock;
} ____cacheline_aligned;

static struct tk_data tk_core;

/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_latch_t	seq;
	struct tk_read_base	base[2];
};

/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	if (timekeeping_suspended)
		return cycles_at_suspend;
	return local_clock();
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

/*
 * Boot time initialization which allows local_clock() to be utilized
 * during early boot when clocksources are not available. local_clock()
 * returns nanoseconds already so no conversion is required, hence mult=1
 * and shift=0. When the first proper clocksource is installed then
 * the fast time keepers are updated with the correct values.
 */
#define FAST_TK_INIT						\
	{							\
		.clock		= &dummy_clock,			\
		.mask		= CLOCKSOURCE_MASK(64),		\
		.mult		= 1,				\
		.shift		= 0,				\
	}

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
	.base[0] = FAST_TK_INIT,
	.base[1] = FAST_TK_INIT,
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
	.base[0] = FAST_TK_INIT,
	.base[1] = FAST_TK_INIT,
};

unsigned long timekeeper_lock_irqsave(void)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&tk_core.lock, flags);
	return flags;
}

void timekeeper_unlock_irqrestore(unsigned long flags)
{
	raw_spin_unlock_irqrestore(&tk_core.lock, flags);
}

/*
 * Multigrain timestamps require tracking the latest fine-grained timestamp
 * that has been issued, and never returning a coarse-grained timestamp that is
 * earlier than that value.
 *
 * mg_floor represents the latest fine-grained time that has been handed out as
 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
 * converted to a realtime clock value on an as-needed basis.
 *
 * Maintaining mg_floor ensures the multigrain interfaces never issue a
 * timestamp earlier than one that has been previously issued.
 *
 * The exception to this rule is when there is a backward realtime clock jump. If
 * such an event occurs, a timestamp can appear to be earlier than a previous one.
 */
static __cacheline_aligned_in_smp atomic64_t mg_floor;

static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
		tk->xtime_sec++;
	}
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
}

static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
	return ts;
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
{
	tk->xtime_sec = ts->tv_sec;
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
{
	tk->xtime_sec += ts->tv_sec;
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
	tk_normalize_xtime(tk);
}

static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
{
	struct timespec64 tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	/* Paired with READ_ONCE() in ktime_mono_to_any() */
	WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
	WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
}

static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
{
	/* Paired with READ_ONCE() in ktime_mono_to_any() */
	WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
	/*
	 * Timespec representation for VDSO update to avoid 64bit division
	 * on every update.
	 */
	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
}

/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqcount ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the tk_core.lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(const struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

/**
 * tk_setup_internals - Set up internals to use clocksource clock.
 *
 * @tk:		The target timekeeper to setup.
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
{
	u64 interval;
	u64 tmp, ntpinterval;
	struct clocksource *old_clock;

	++tk->cs_was_changed_seq;
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);

	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
	ntpinterval = tmp;
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
	if (tmp == 0)
		tmp = 1;

	interval = (u64) tmp;
	tk->cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	tk->xtime_interval = interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval = interval * clock->mult;

	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0) {
			tk->tkr_mono.xtime_nsec >>= -shift_change;
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
			tk->tkr_mono.xtime_nsec <<= shift_change;
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
	}

	tk->tkr_mono.shift = clock->shift;
	tk->tkr_raw.shift = clock->shift;

	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	tk->tkr_mono.mult = clock->mult;
	tk->tkr_raw.mult = clock->mult;
	tk->ntp_err_mult = 0;
	tk->skip_second_overflow = 0;
}

/* Timekeeper helper functions. */
static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
{
	return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
}

static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
{
	/* Calculate the delta since the last update_wall_time() */
	u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;

	/*
	 * This detects both negative motion and the case where the delta
	 * overflows the multiplication with tkr->mult.
	 */
	if (unlikely(delta > tkr->clock->max_cycles)) {
		/*
		 * Handle clocksource inconsistency between CPUs to prevent
		 * time from going backwards by checking for the MSB of the
		 * mask being set in the delta.
		 */
		if (delta & ~(mask >> 1))
			return tkr->xtime_nsec >> tkr->shift;

		return delta_to_ns_safe(tkr, delta);
	}

	return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
}

static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
{
	return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
}

/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 * @tkr: Timekeeping readout base from which we take the update
 * @tkf: Pointer to NMI safe timekeeper
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * Employ the latch technique; see @write_seqcount_latch.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
static void update_fast_timekeeper(const struct tk_read_base *tkr,
				   struct tk_fast *tkf)
{
	struct tk_read_base *base = tkf->base;

	/* Force readers off to base[1] */
	write_seqcount_latch_begin(&tkf->seq);

	/* Update base[0] */
	memcpy(base, tkr, sizeof(*base));

	/* Force readers back to base[0] */
	write_seqcount_latch(&tkf->seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));

	write_seqcount_latch_end(&tkf->seq);
}

static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base);
		now += timekeeping_get_ns(tkr);
	} while (read_seqcount_latch_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able to observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

/**
 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
 *
 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
 * conversion factor is not affected by NTP/PTP correction.
 */
u64 notrace ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqcounts. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 *
 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
 * apply as well.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);

/**
 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
 *
 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
 * mono time and the TAI offset are not read atomically which may yield wrong
 * readouts. However, an update of the TAI offset is an rare event e.g., caused
 * by settime or adjtimex with an offset. The user of this function has to deal
 * with the possibility of wrong timestamps in post processing.
 */
u64 notrace ktime_get_tai_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
}
EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);

static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
{
	struct tk_read_base *tkr;
	u64 basem, baser, delta;
	unsigned int seq;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		basem = ktime_to_ns(tkr->base);
		baser = ktime_to_ns(tkr->base_real);
		delta = timekeeping_get_ns(tkr);
	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));

	if (mono)
		*mono = basem + delta;
	return baser + delta;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 *
 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast(&tk_fast_mono, NULL);
}
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);

/**
 * ktime_get_fast_timestamps: - NMI safe timestamps
 * @snapshot:	Pointer to timestamp storage
 *
 * Stores clock monotonic, boottime and realtime timestamps.
 *
 * Boot time is a racy access on 32bit systems if the sleep time injection
 * happens late during resume and not in timekeeping_resume(). That could
 * be avoided by expanding struct tk_read_base with boot offset for 32bit
 * and adding more overhead to the update. As this is a hard to observe
 * once per resume event which can be filtered with reasonable effort using
 * the accurate mono/real timestamps, it's probably not worth the trouble.
 *
 * Aside of that it might be possible on 32 and 64 bit to observe the
 * following when the sleep time injection happens late:
 *
 * CPU 0				CPU 1
 * timekeeping_resume()
 * ktime_get_fast_timestamps()
 *	mono, real = __ktime_get_real_fast()
 *					inject_sleep_time()
 *					   update boot offset
 *	boot = mono + bootoffset;
 *
 * That means that boot time already has the sleep time adjustment, but
 * real time does not. On the next readout both are in sync again.
 *
 * Preventing this for 64bit is not really feasible without destroying the
 * careful cache layout of the timekeeper because the sequence count and
 * struct tk_read_base would then need two cache lines instead of one.
 *
 * Access to the time keeper clock source is disabled across the innermost
 * steps of suspend/resume. The accessors still work, but the timestamps
 * are frozen until time keeping is resumed which happens very early.
 *
 * For regular suspend/resume there is no observable difference vs. sched
 * clock, but it might affect some of the nasty low level debug printks.
 *
 * OTOH, access to sched clock is not guaranteed across suspend/resume on
 * all systems either so it depends on the hardware in use.
 *
 * If that turns out to be a real problem then this could be mitigated by
 * using sched clock in a similar way as during early boot. But it's not as
 * trivial as on early boot because it needs some careful protection
 * against the clock monotonic timestamp jumping backwards on resume.
 */
void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(const struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
	const struct tk_read_base *tkr = &tk->tkr_mono;

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
	tkr_dummy.base_real = tkr->base + tk->offs_real;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	tkr_dummy.clock = &dummy_clock;
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
}

static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
{
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 * @nb: Pointer to the notifier block to register
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	int ret;

	guard(raw_spinlock_irqsave)(&tk_core.lock);
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
	update_pvclock_gtod(tk, true);

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 * @nb: Pointer to the notifier block to unregister
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	guard(raw_spinlock_irqsave)(&tk_core.lock);
	return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
	if (tk->next_leap_ktime != KTIME_MAX)
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

/*
 * Leap state update for both shadow and the real timekeeper
 * Separate to spare a full memcpy() of the timekeeper.
 */
static void tk_update_leap_state_all(struct tk_data *tkd)
{
	write_seqcount_begin(&tkd->seq);
	tk_update_leap_state(&tkd->shadow_timekeeper);
	tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
	write_seqcount_end(&tkd->seq);
}

/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
	u64 seconds;
	u32 nsec;

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;

	/* Update the monotonic raw base */
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
}

/*
 * Restore the shadow timekeeper from the real timekeeper.
 */
static void timekeeping_restore_shadow(struct tk_data *tkd)
{
	lockdep_assert_held(&tkd->lock);
	memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
}

static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
{
	struct timekeeper *tk = &tk_core.shadow_timekeeper;

	lockdep_assert_held(&tkd->lock);

	/*
	 * Block out readers before running the updates below because that
	 * updates VDSO and other time related infrastructure. Not blocking
	 * the readers might let a reader see time going backwards when
	 * reading from the VDSO after the VDSO update and then reading in
	 * the kernel from the timekeeper before that got updated.
	 */
	write_seqcount_begin(&tkd->seq);

	if (action & TK_CLEAR_NTP) {
		tk->ntp_error = 0;
		ntp_clear();
	}

	tk_update_leap_state(tk);
	tk_update_ktime_data(tk);

	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;

	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy() by switching pointers, but that has
	 * the downside that the reader side does not longer benefit from
	 * the cacheline optimized data layout of the timekeeper and requires
	 * another indirection.
	 */
	memcpy(&tkd->timekeeper, tk, sizeof(*tk));
	write_seqcount_end(&tkd->seq);
}

/**
 * timekeeping_forward_now - update clock to the current time
 * @tk:		Pointer to the timekeeper to update
 *
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
 */
static void timekeeping_forward_now(struct timekeeper *tk)
{
	u64 cycle_now, delta;

	cycle_now = tk_clock_read(&tk->tkr_mono);
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
				  tk->tkr_mono.clock->max_raw_delta);
	tk->tkr_mono.cycle_last = cycle_now;
	tk->tkr_raw.cycle_last  = cycle_now;

	while (delta > 0) {
		u64 max = tk->tkr_mono.clock->max_cycles;
		u64 incr = delta < max ? delta : max;

		tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
		tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
		tk_normalize_xtime(tk);
		delta -= incr;
	}
}

/**
 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec64 (WARN if suspended).
 */
void ktime_get_real_ts64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);

		ts->tv_sec = tk->xtime_sec;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(ktime_get_real_ts64);

ktime_t ktime_get(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	u64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);

/**
 * ktime_mono_to_any() - convert monotonic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned int seq;
	ktime_t tconv;

	if (IS_ENABLED(CONFIG_64BIT)) {
		/*
		 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
		 * tk_update_sleep_time().
		 */
		return ktime_add(tmono, READ_ONCE(*offset));
	}

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	u64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

/**
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec64 format in the variable pointed to by @ts.
 */
void ktime_get_ts64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	struct timespec64 tomono;
	unsigned int seq;
	u64 nsec;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		ts->tv_sec = tk->xtime_sec;
		nsec = timekeeping_get_ns(&tk->tkr_mono);
		tomono = tk->wall_to_monotonic;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts64);

/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
noinstr time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base_raw;
	ktime_t base_real;
	ktime_t base_boot;
	u64 nsec_raw;
	u64 nsec_real;
	u64 now;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tk_clock_read(&tk->tkr_mono);
		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_boot = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_boot);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);

/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;

	rem = div64_u64(rem * mult, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
	interp_forward = partial_history_cycles > total_history_cycles / 2;
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * timestamp_in_interval - true if ts is chronologically in [start, end]
 *
 * True if ts occurs chronologically at or after start, and before or at end.
 */
static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
{
	if (ts >= start && ts <= end)
		return true;
	if (start > end && (ts >= start || ts <= end))
		return true;
	return false;
}

static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
{
	u64 rem, res;

	if (!numerator || !denominator)
		return false;

	res = div64_u64_rem(*val, denominator, &rem) * numerator;
	*val = res + div_u64(rem * numerator, denominator);
	return true;
}

static bool convert_base_to_cs(struct system_counterval_t *scv)
{
	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
	struct clocksource_base *base;
	u32 num, den;

	/* The timestamp was taken from the time keeper clock source */
	if (cs->id == scv->cs_id)
		return true;

	/*
	 * Check whether cs_id matches the base clock. Prevent the compiler from
	 * re-evaluating @base as the clocksource might change concurrently.
	 */
	base = READ_ONCE(cs->base);
	if (!base || base->id != scv->cs_id)
		return false;

	num = scv->use_nsecs ? cs->freq_khz : base->numerator;
	den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;

	if (!convert_clock(&scv->cycles, num, den))
		return false;

	scv->cycles += base->offset;
	return true;
}

static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
{
	struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
	struct clocksource_base *base;

	/*
	 * Check whether base_id matches the base clock. Prevent the compiler from
	 * re-evaluating @base as the clocksource might change concurrently.
	 */
	base = READ_ONCE(cs->base);
	if (!base || base->id != base_id)
		return false;

	*cycles -= base->offset;
	if (!convert_clock(cycles, base->denominator, base->numerator))
		return false;
	return true;
}

static bool convert_ns_to_cs(u64 *delta)
{
	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;

	if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
		return false;

	*delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
	return true;
}

/**
 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
 * @treal:	CLOCK_REALTIME timestamp to convert
 * @base_id:	base clocksource id
 * @cycles:	pointer to store the converted base clock timestamp
 *
 * Converts a supplied, future realtime clock value to the corresponding base clock value.
 *
 * Return:  true if the conversion is successful, false otherwise.
 */
bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u64 delta;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		if ((u64)treal < tk->tkr_mono.base_real)
			return false;
		delta = (u64)treal - tk->tkr_mono.base_real;
		if (!convert_ns_to_cs(&delta))
			return false;
		*cycles = tk->tkr_mono.cycle_last + delta;
		if (!convert_cs_to_base(cycles, base_id))
			return false;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return true;
}
EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);

/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
 * @get_time_fn:	Callback to get simultaneous device time and
 *	system counter from the device driver
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
				  struct system_time_snapshot *history_begin,
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 cycles, now, interval_start;
	unsigned int clock_was_set_seq = 0;
	ktime_t base_real, base_raw;
	u64 nsec_real, nsec_raw;
	u8 cs_was_changed_seq;
	unsigned int seq;
	bool do_interp;
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource ID associated with the captured
		 * system counter value is the same as for the currently
		 * installed timekeeper clocksource
		 */
		if (system_counterval.cs_id == CSID_GENERIC ||
		    !convert_base_to_cs(&system_counterval))
			return -ENODEV;
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
		now = tk_clock_read(&tk->tkr_mono);
		interval_start = tk->tkr_mono.cycle_last;
		if (!timestamp_in_interval(interval_start, now, cycles)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
		u64 partial_history_cycles, total_history_cycles;
		bool discontinuity;

		/*
		 * Check that the counter value is not before the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !timestamp_in_interval(history_begin->cycles,
					   cycles, system_counterval.cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

/**
 * timekeeping_clocksource_has_base - Check whether the current clocksource
 *				      is based on given a base clock
 * @id:		base clocksource ID
 *
 * Note:	The return value is a snapshot which can become invalid right
 *		after the function returns.
 *
 * Return:	true if the timekeeper clocksource has a base clock with @id,
 *		false otherwise
 */
bool timekeeping_clocksource_has_base(enum clocksource_ids id)
{
	/*
	 * This is a snapshot, so no point in using the sequence
	 * count. Just prevent the compiler from re-evaluating @base as the
	 * clocksource might change concurrently.
	 */
	struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);

	return base ? base->id == id : false;
}
EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);

/**
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday64(const struct timespec64 *ts)
{
	struct timespec64 ts_delta, xt;

	if (!timespec64_valid_settod(ts))
		return -EINVAL;

	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
		struct timekeeper *tks = &tk_core.shadow_timekeeper;

		timekeeping_forward_now(tks);

		xt = tk_xtime(tks);
		ts_delta = timespec64_sub(*ts, xt);

		if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
			timekeeping_restore_shadow(&tk_core);
			return -EINVAL;
		}

		tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
		tk_set_xtime(tks, ts);
		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
	}

	/* Signal hrtimers about time change */
	clock_was_set(CLOCK_SET_WALL);

	audit_tk_injoffset(ts_delta);
	add_device_randomness(ts, sizeof(*ts));
	return 0;
}
EXPORT_SYMBOL(do_settimeofday64);

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @ts:		Pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
static int timekeeping_inject_offset(const struct timespec64 *ts)
{
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
		struct timekeeper *tks = &tk_core.shadow_timekeeper;
		struct timespec64 tmp;

		timekeeping_forward_now(tks);

		/* Make sure the proposed value is valid */
		tmp = timespec64_add(tk_xtime(tks), *ts);
		if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
		    !timespec64_valid_settod(&tmp)) {
			timekeeping_restore_shadow(&tk_core);
			return -EINVAL;
		}

		tk_xtime_add(tks, ts);
		tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
	}

	/* Signal hrtimers about time change */
	clock_was_set(CLOCK_SET_WALL);
	return 0;
}

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
		struct timespec64 adjust;

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}

/*
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
 */
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
{
	tk->tai_offset = tai_offset;
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
}

/*
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
static int change_clocksource(void *data)
{
	struct clocksource *new = data, *old = NULL;

	/*
	 * If the clocksource is in a module, get a module reference.
	 * Succeeds for built-in code (owner == NULL) as well. Abort if the
	 * reference can't be acquired.
	 */
	if (!try_module_get(new->owner))
		return 0;

	/* Abort if the device can't be enabled */
	if (new->enable && new->enable(new) != 0) {
		module_put(new->owner);
		return 0;
	}

	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
		struct timekeeper *tks = &tk_core.shadow_timekeeper;

		timekeeping_forward_now(tks);
		old = tks->tkr_mono.clock;
		tk_setup_internals(tks, new);
		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
	}

	if (old) {
		if (old->disable)
			old->disable(old);
		module_put(old->owner);
	}

	return 0;
}

/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
int timekeeping_notify(struct clocksource *clock)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	if (tk->tkr_mono.clock == clock)
		return 0;
	stop_machine(change_clocksource, clock, NULL);
	tick_clock_notify();
	return tk->tkr_mono.clock == clock ? 0 : -1;
}

/**
 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void ktime_get_raw_ts64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		ts->tv_sec = tk->raw_sec;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(ktime_get_raw_ts64);


/**
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
 */
int timekeeping_valid_for_hres(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);

		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ret;
}

/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u64 ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);

		ret = tk->tkr_mono.clock->max_idle_ns;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ret;
}

/**
 * read_persistent_clock64 -  Return time from the persistent clock.
 * @ts: Pointer to the storage for the readout value
 *
 * Weak dummy function for arches that do not yet support it.
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __weak read_persistent_clock64(struct timespec64 *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

/**
 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
 *                                        from the boot.
 * @wall_time:	  current time as returned by persistent clock
 * @boot_offset:  offset that is defined as wall_time - boot_time
 *
 * Weak dummy function for arches that do not yet support it.
 *
 * The default function calculates offset based on the current value of
 * local_clock(). This way architectures that support sched_clock() but don't
 * support dedicated boot time clock will provide the best estimate of the
 * boot time.
 */
void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
				     struct timespec64 *boot_offset)
{
	read_persistent_clock64(wall_time);
	*boot_offset = ns_to_timespec64(local_clock());
}

static __init void tkd_basic_setup(struct tk_data *tkd)
{
	raw_spin_lock_init(&tkd->lock);
	seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
}

/*
 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
 *
 * The flag starts of false and is only set when a suspend reaches
 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
 * timekeeper clocksource is not stopping across suspend and has been
 * used to update sleep time. If the timekeeper clocksource has stopped
 * then the flag stays true and is used by the RTC resume code to decide
 * whether sleeptime must be injected and if so the flag gets false then.
 *
 * If a suspend fails before reaching timekeeping_resume() then the flag
 * stays false and prevents erroneous sleeptime injection.
 */
static bool suspend_timing_needed;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
	struct timespec64 wall_time, boot_offset, wall_to_mono;
	struct timekeeper *tks = &tk_core.shadow_timekeeper;
	struct clocksource *clock;

	tkd_basic_setup(&tk_core);

	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
	if (timespec64_valid_settod(&wall_time) &&
	    timespec64_to_ns(&wall_time) > 0) {
		persistent_clock_exists = true;
	} else if (timespec64_to_ns(&wall_time) != 0) {
		pr_warn("Persistent clock returned invalid value");
		wall_time = (struct timespec64){0};
	}

	if (timespec64_compare(&wall_time, &boot_offset) < 0)
		boot_offset = (struct timespec64){0};

	/*
	 * We want set wall_to_mono, so the following is true:
	 * wall time + wall_to_mono = boot time
	 */
	wall_to_mono = timespec64_sub(boot_offset, wall_time);

	guard(raw_spinlock_irqsave)(&tk_core.lock);

	ntp_init();

	clock = clocksource_default_clock();
	if (clock->enable)
		clock->enable(clock);
	tk_setup_internals(tks, clock);

	tk_set_xtime(tks, &wall_time);
	tks->raw_sec = 0;

	tk_set_wall_to_mono(tks, wall_to_mono);

	timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
}

/* time in seconds when suspend began for persistent clock */
static struct timespec64 timekeeping_suspend_time;

/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @tk:		Pointer to the timekeeper to be updated
 * @delta:	Pointer to the delta value in timespec64 format
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
					   const struct timespec64 *delta)
{
	if (!timespec64_valid_strict(delta)) {
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
		return;
	}
	tk_xtime_add(tk, delta);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
	tk_debug_account_sleep_time(delta);
}

#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
/*
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return !suspend_timing_needed;
}

/*
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

/**
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock64
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 * and also don't have an effective nonstop clocksource.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
{
	scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
		struct timekeeper *tks = &tk_core.shadow_timekeeper;

		suspend_timing_needed = false;
		timekeeping_forward_now(tks);
		__timekeeping_inject_sleeptime(tks, delta);
		timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
	}

	/* Signal hrtimers about time change */
	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
}
#endif

/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
void timekeeping_resume(void)
{
	struct timekeeper *tks = &tk_core.shadow_timekeeper;
	struct clocksource *clock = tks->tkr_mono.clock;
	struct timespec64 ts_new, ts_delta;
	bool inject_sleeptime = false;
	u64 cycle_now, nsec;
	unsigned long flags;

	read_persistent_clock64(&ts_new);

	clockevents_resume();
	clocksource_resume();

	raw_spin_lock_irqsave(&tk_core.lock, flags);

	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = tk_clock_read(&tks->tkr_mono);
	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
	if (nsec > 0) {
		ts_delta = ns_to_timespec64(nsec);
		inject_sleeptime = true;
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
		inject_sleeptime = true;
	}

	if (inject_sleeptime) {
		suspend_timing_needed = false;
		__timekeeping_inject_sleeptime(tks, &ts_delta);
	}

	/* Re-base the last cycle value */
	tks->tkr_mono.cycle_last = cycle_now;
	tks->tkr_raw.cycle_last  = cycle_now;

	tks->ntp_error = 0;
	timekeeping_suspended = 0;
	timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
	raw_spin_unlock_irqrestore(&tk_core.lock, flags);

	touch_softlockup_watchdog();

	/* Resume the clockevent device(s) and hrtimers */
	tick_resume();
	/* Notify timerfd as resume is equivalent to clock_was_set() */
	timerfd_resume();
}

int timekeeping_suspend(void)
{
	struct timekeeper *tks = &tk_core.shadow_timekeeper;
	struct timespec64 delta, delta_delta;
	static struct timespec64 old_delta;
	struct clocksource *curr_clock;
	unsigned long flags;
	u64 cycle_now;

	read_persistent_clock64(&timekeeping_suspend_time);

	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exists = true;

	suspend_timing_needed = true;

	raw_spin_lock_irqsave(&tk_core.lock, flags);
	timekeeping_forward_now(tks);
	timekeeping_suspended = 1;

	/*
	 * Since we've called forward_now, cycle_last stores the value
	 * just read from the current clocksource. Save this to potentially
	 * use in suspend timing.
	 */
	curr_clock = tks->tkr_mono.clock;
	cycle_now = tks->tkr_mono.cycle_last;
	clocksource_start_suspend_timing(curr_clock, cycle_now);

	if (persistent_clock_exists) {
		/*
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
		 */
		delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
	}

	timekeeping_update_from_shadow(&tk_core, 0);
	halt_fast_timekeeper(tks);
	raw_spin_unlock_irqrestore(&tk_core.lock, flags);

	tick_suspend();
	clocksource_suspend();
	clockevents_suspend();

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct syscore_ops timekeeping_syscore_ops = {
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

static int __init timekeeping_init_ops(void)
{
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
}
device_initcall(timekeeping_init_ops);

/*
 * Apply a multiplier adjustment to the timekeeper
 */
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 s32 mult_adj)
{
	s64 interval = tk->cycle_interval;

	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
		interval = -interval;
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
	}

	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume mult_adj == 1 for now.
	 *
	 * When mult_adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplifies to:
	 *	xtime_nsec -= offset
	 */
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

	tk->tkr_mono.mult += mult_adj;
	tk->xtime_interval += interval;
	tk->tkr_mono.xtime_nsec -= offset;
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	u64 ntp_tl = ntp_tick_length();
	u32 mult;

	/*
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
	 */
	if (likely(tk->ntp_tick == ntp_tl)) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tl;
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
	}

	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;

	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);

	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
	}

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
	 */
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
	}
}

/*
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates the nsecs greater than a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 */
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
	unsigned int clock_set = 0;

	while (tk->tkr_mono.xtime_nsec >= nsecps) {
		int leap;

		tk->tkr_mono.xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
		if (unlikely(leap)) {
			struct timespec64 ts;

			tk->xtime_sec += leap;

			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec64_sub(tk->wall_to_monotonic, ts));

			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

			clock_set = TK_CLOCK_WAS_SET;
		}
	}
	return clock_set;
}

/*
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
{
	u64 interval = tk->cycle_interval << shift;
	u64 snsec_per_sec;

	/* If the offset is smaller than a shifted interval, do nothing */
	if (offset < interval)
		return offset;

	/* Accumulate one shifted interval */
	offset -= interval;
	tk->tkr_mono.cycle_last += interval;
	tk->tkr_raw.cycle_last  += interval;

	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
	*clock_set |= accumulate_nsecs_to_secs(tk);

	/* Accumulate raw time */
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
		tk->raw_sec++;
	}

	/* Accumulate error between NTP and clock interval */
	tk->ntp_error += tk->ntp_tick << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);

	return offset;
}

/*
 * timekeeping_advance - Updates the timekeeper to the current time and
 * current NTP tick length
 */
static bool timekeeping_advance(enum timekeeping_adv_mode mode)
{
	struct timekeeper *tk = &tk_core.shadow_timekeeper;
	struct timekeeper *real_tk = &tk_core.timekeeper;
	unsigned int clock_set = 0;
	int shift = 0, maxshift;
	u64 offset;

	guard(raw_spinlock_irqsave)(&tk_core.lock);

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return false;

	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask,
				   tk->tkr_mono.clock->max_raw_delta);

	/* Check if there's really nothing to do */
	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
		return false;

	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller than the offset.  We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
	 */
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less than what overflows tick_length */
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
	shift = min(shift, maxshift);
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
		if (offset < tk->cycle_interval<<shift)
			shift--;
	}

	/* Adjust the multiplier to correct NTP error */
	timekeeping_adjust(tk, offset);

	/*
	 * Finally, make sure that after the rounding
	 * xtime_nsec isn't larger than NSEC_PER_SEC
	 */
	clock_set |= accumulate_nsecs_to_secs(tk);

	timekeeping_update_from_shadow(&tk_core, clock_set);

	return !!clock_set;
}

/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
void update_wall_time(void)
{
	if (timekeeping_advance(TK_ADV_TICK))
		clock_was_set_delayed();
}

/**
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
 *
 * Returns the wall-time of boot in a timespec64.
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

	*ts = ktime_to_timespec64(t);
}
EXPORT_SYMBOL_GPL(getboottime64);

void ktime_get_coarse_real_ts64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;

	do {
		seq = read_seqcount_begin(&tk_core.seq);

		*ts = tk_xtime(tk);
	} while (read_seqcount_retry(&tk_core.seq, seq));
}
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);

/**
 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
 * @ts:		timespec64 to be filled
 *
 * Fetch the global mg_floor value, convert it to realtime and compare it
 * to the current coarse-grained time. Fill @ts with whichever is
 * latest. Note that this is a filesystem-specific interface and should be
 * avoided outside of that context.
 */
void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 floor = atomic64_read(&mg_floor);
	ktime_t f_real, offset, coarse;
	unsigned int seq;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		*ts = tk_xtime(tk);
		offset = tk_core.timekeeper.offs_real;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	coarse = timespec64_to_ktime(*ts);
	f_real = ktime_add(floor, offset);
	if (ktime_after(f_real, coarse))
		*ts = ktime_to_timespec64(f_real);
}

/**
 * ktime_get_real_ts64_mg - attempt to update floor value and return result
 * @ts:		pointer to the timespec to be set
 *
 * Get a monotonic fine-grained time value and attempt to swap it into
 * mg_floor. If that succeeds then accept the new floor value. If it fails
 * then another task raced in during the interim time and updated the
 * floor.  Since any update to the floor must be later than the previous
 * floor, either outcome is acceptable.
 *
 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
 * and determining that the resulting coarse-grained timestamp did not effect
 * a change in ctime. Any more recent floor value would effect a change to
 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
 *
 * @ts will be filled with the latest floor value, regardless of the outcome of
 * the cmpxchg. Note that this is a filesystem specific interface and should be
 * avoided outside of that context.
 */
void ktime_get_real_ts64_mg(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	ktime_t old = atomic64_read(&mg_floor);
	ktime_t offset, mono;
	unsigned int seq;
	u64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);

		ts->tv_sec = tk->xtime_sec;
		mono = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
		offset = tk_core.timekeeper.offs_real;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	mono = ktime_add_ns(mono, nsecs);

	/*
	 * Attempt to update the floor with the new time value. As any
	 * update must be later then the existing floor, and would effect
	 * a change to ctime from the perspective of the current task,
	 * accept the resulting floor value regardless of the outcome of
	 * the swap.
	 */
	if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
		ts->tv_nsec = 0;
		timespec64_add_ns(ts, nsecs);
		timekeeping_inc_mg_floor_swaps();
	} else {
		/*
		 * Another task changed mg_floor since "old" was fetched.
		 * "old" has been updated with the latest value of "mg_floor".
		 * That value is newer than the previous floor value, which
		 * is enough to effect a change to ctime. Accept it.
		 */
		*ts = ktime_to_timespec64(ktime_add(old, offset));
	}
}

void ktime_get_coarse_ts64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	struct timespec64 now, mono;
	unsigned int seq;

	do {
		seq = read_seqcount_begin(&tk_core.seq);

		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
}
EXPORT_SYMBOL(ktime_get_coarse_ts64);

/*
 * Must hold jiffies_lock
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load();
}

/**
 * ktime_get_update_offsets_now - hrtimer helper
 * @cwsseq:	pointer to check and store the clock was set sequence number
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
 * Called from hrtimer_interrupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
				     ktime_t *offs_boot, ktime_t *offs_tai)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	u64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);

		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
		base = ktime_add_ns(base, nsecs);

		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_boot = tk->offs_boot;
			*offs_tai = tk->offs_tai;
		}

		/* Handle leapsecond insertion adjustments */
		if (unlikely(base >= tk->next_leap_ktime))
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return base;
}

/*
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
 */
static int timekeeping_validate_timex(const struct __kernel_timex *txc)
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be positive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;

		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
				return -EINVAL;
		} else {
			if (txc->time.tv_usec >= USEC_PER_SEC)
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}

/**
 * random_get_entropy_fallback - Returns the raw clock source value,
 * used by random.c for platforms with no valid random_get_entropy().
 */
unsigned long random_get_entropy_fallback(void)
{
	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
	struct clocksource *clock = READ_ONCE(tkr->clock);

	if (unlikely(timekeeping_suspended || !clock))
		return 0;
	return clock->read(clock);
}
EXPORT_SYMBOL_GPL(random_get_entropy_fallback);

/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 * @txc:	Pointer to kernel_timex structure containing NTP parameters
 */
int do_adjtimex(struct __kernel_timex *txc)
{
	struct audit_ntp_data ad;
	bool offset_set = false;
	bool clock_set = false;
	struct timespec64 ts;
	int ret;

	/* Validate the data before disabling interrupts */
	ret = timekeeping_validate_timex(txc);
	if (ret)
		return ret;
	add_device_randomness(txc, sizeof(*txc));

	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec64 delta;

		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;

		offset_set = delta.tv_sec != 0;
		audit_tk_injoffset(delta);
	}

	audit_ntp_init(&ad);

	ktime_get_real_ts64(&ts);
	add_device_randomness(&ts, sizeof(ts));

	scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
		struct timekeeper *tks = &tk_core.shadow_timekeeper;
		s32 orig_tai, tai;

		orig_tai = tai = tks->tai_offset;
		ret = __do_adjtimex(txc, &ts, &tai, &ad);

		if (tai != orig_tai) {
			__timekeeping_set_tai_offset(tks, tai);
			timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
			clock_set = true;
		} else {
			tk_update_leap_state_all(&tk_core);
		}
	}

	audit_ntp_log(&ad);

	/* Update the multiplier immediately if frequency was set directly */
	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
		clock_set |= timekeeping_advance(TK_ADV_FREQ);

	if (clock_set)
		clock_was_set(CLOCK_SET_WALL);

	ntp_notify_cmos_timer(offset_set);

	return ret;
}

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 * @phase_ts:	Pointer to timespec64 structure representing phase timestamp
 * @raw_ts:	Pointer to timespec64 structure representing raw timestamp
 */
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
{
	guard(raw_spinlock_irqsave)(&tk_core.lock);
	__hardpps(phase_ts, raw_ts);
}
EXPORT_SYMBOL(hardpps);
#endif /* CONFIG_NTP_PPS */