summaryrefslogtreecommitdiff
path: root/mm/execmem.c
blob: 317b6a8d35be070a0a426eb1eba8d947e8b7e5f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2002 Richard Henderson
 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
 * Copyright (C) 2024 Mike Rapoport IBM.
 */

#define pr_fmt(fmt) "execmem: " fmt

#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/vmalloc.h>
#include <linux/execmem.h>
#include <linux/maple_tree.h>
#include <linux/set_memory.h>
#include <linux/moduleloader.h>
#include <linux/text-patching.h>

#include <asm/tlbflush.h>

#include "internal.h"

static struct execmem_info *execmem_info __ro_after_init;
static struct execmem_info default_execmem_info __ro_after_init;

#ifdef CONFIG_MMU
static void *execmem_vmalloc(struct execmem_range *range, size_t size,
			     pgprot_t pgprot, unsigned long vm_flags)
{
	bool kasan = range->flags & EXECMEM_KASAN_SHADOW;
	gfp_t gfp_flags = GFP_KERNEL | __GFP_NOWARN;
	unsigned int align = range->alignment;
	unsigned long start = range->start;
	unsigned long end = range->end;
	void *p;

	if (kasan)
		vm_flags |= VM_DEFER_KMEMLEAK;

	if (vm_flags & VM_ALLOW_HUGE_VMAP)
		align = PMD_SIZE;

	p = __vmalloc_node_range(size, align, start, end, gfp_flags,
				 pgprot, vm_flags, NUMA_NO_NODE,
				 __builtin_return_address(0));
	if (!p && range->fallback_start) {
		start = range->fallback_start;
		end = range->fallback_end;
		p = __vmalloc_node_range(size, align, start, end, gfp_flags,
					 pgprot, vm_flags, NUMA_NO_NODE,
					 __builtin_return_address(0));
	}

	if (!p) {
		pr_warn_ratelimited("unable to allocate memory\n");
		return NULL;
	}

	if (kasan && (kasan_alloc_module_shadow(p, size, GFP_KERNEL) < 0)) {
		vfree(p);
		return NULL;
	}

	return p;
}

struct vm_struct *execmem_vmap(size_t size)
{
	struct execmem_range *range = &execmem_info->ranges[EXECMEM_MODULE_DATA];
	struct vm_struct *area;

	area = __get_vm_area_node(size, range->alignment, PAGE_SHIFT, VM_ALLOC,
				  range->start, range->end, NUMA_NO_NODE,
				  GFP_KERNEL, __builtin_return_address(0));
	if (!area && range->fallback_start)
		area = __get_vm_area_node(size, range->alignment, PAGE_SHIFT, VM_ALLOC,
					  range->fallback_start, range->fallback_end,
					  NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0));

	return area;
}
#else
static void *execmem_vmalloc(struct execmem_range *range, size_t size,
			     pgprot_t pgprot, unsigned long vm_flags)
{
	return vmalloc(size);
}
#endif /* CONFIG_MMU */

#ifdef CONFIG_ARCH_HAS_EXECMEM_ROX
struct execmem_cache {
	struct mutex mutex;
	struct maple_tree busy_areas;
	struct maple_tree free_areas;
};

static struct execmem_cache execmem_cache = {
	.mutex = __MUTEX_INITIALIZER(execmem_cache.mutex),
	.busy_areas = MTREE_INIT_EXT(busy_areas, MT_FLAGS_LOCK_EXTERN,
				     execmem_cache.mutex),
	.free_areas = MTREE_INIT_EXT(free_areas, MT_FLAGS_LOCK_EXTERN,
				     execmem_cache.mutex),
};

static inline unsigned long mas_range_len(struct ma_state *mas)
{
	return mas->last - mas->index + 1;
}

static int execmem_set_direct_map_valid(struct vm_struct *vm, bool valid)
{
	unsigned int nr = (1 << get_vm_area_page_order(vm));
	unsigned int updated = 0;
	int err = 0;

	for (int i = 0; i < vm->nr_pages; i += nr) {
		err = set_direct_map_valid_noflush(vm->pages[i], nr, valid);
		if (err)
			goto err_restore;
		updated += nr;
	}

	return 0;

err_restore:
	for (int i = 0; i < updated; i += nr)
		set_direct_map_valid_noflush(vm->pages[i], nr, !valid);

	return err;
}

static void execmem_cache_clean(struct work_struct *work)
{
	struct maple_tree *free_areas = &execmem_cache.free_areas;
	struct mutex *mutex = &execmem_cache.mutex;
	MA_STATE(mas, free_areas, 0, ULONG_MAX);
	void *area;

	mutex_lock(mutex);
	mas_for_each(&mas, area, ULONG_MAX) {
		size_t size = mas_range_len(&mas);

		if (IS_ALIGNED(size, PMD_SIZE) &&
		    IS_ALIGNED(mas.index, PMD_SIZE)) {
			struct vm_struct *vm = find_vm_area(area);

			execmem_set_direct_map_valid(vm, true);
			mas_store_gfp(&mas, NULL, GFP_KERNEL);
			vfree(area);
		}
	}
	mutex_unlock(mutex);
}

static DECLARE_WORK(execmem_cache_clean_work, execmem_cache_clean);

static int execmem_cache_add(void *ptr, size_t size)
{
	struct maple_tree *free_areas = &execmem_cache.free_areas;
	struct mutex *mutex = &execmem_cache.mutex;
	unsigned long addr = (unsigned long)ptr;
	MA_STATE(mas, free_areas, addr - 1, addr + 1);
	unsigned long lower, upper;
	void *area = NULL;
	int err;

	lower = addr;
	upper = addr + size - 1;

	mutex_lock(mutex);
	area = mas_walk(&mas);
	if (area && mas.last == addr - 1)
		lower = mas.index;

	area = mas_next(&mas, ULONG_MAX);
	if (area && mas.index == addr + size)
		upper = mas.last;

	mas_set_range(&mas, lower, upper);
	err = mas_store_gfp(&mas, (void *)lower, GFP_KERNEL);
	mutex_unlock(mutex);
	if (err)
		return err;

	return 0;
}

static bool within_range(struct execmem_range *range, struct ma_state *mas,
			 size_t size)
{
	unsigned long addr = mas->index;

	if (addr >= range->start && addr + size < range->end)
		return true;

	if (range->fallback_start &&
	    addr >= range->fallback_start && addr + size < range->fallback_end)
		return true;

	return false;
}

static void *__execmem_cache_alloc(struct execmem_range *range, size_t size)
{
	struct maple_tree *free_areas = &execmem_cache.free_areas;
	struct maple_tree *busy_areas = &execmem_cache.busy_areas;
	MA_STATE(mas_free, free_areas, 0, ULONG_MAX);
	MA_STATE(mas_busy, busy_areas, 0, ULONG_MAX);
	struct mutex *mutex = &execmem_cache.mutex;
	unsigned long addr, last, area_size = 0;
	void *area, *ptr = NULL;
	int err;

	mutex_lock(mutex);
	mas_for_each(&mas_free, area, ULONG_MAX) {
		area_size = mas_range_len(&mas_free);

		if (area_size >= size && within_range(range, &mas_free, size))
			break;
	}

	if (area_size < size)
		goto out_unlock;

	addr = mas_free.index;
	last = mas_free.last;

	/* insert allocated size to busy_areas at range [addr, addr + size) */
	mas_set_range(&mas_busy, addr, addr + size - 1);
	err = mas_store_gfp(&mas_busy, (void *)addr, GFP_KERNEL);
	if (err)
		goto out_unlock;

	mas_store_gfp(&mas_free, NULL, GFP_KERNEL);
	if (area_size > size) {
		void *ptr = (void *)(addr + size);

		/*
		 * re-insert remaining free size to free_areas at range
		 * [addr + size, last]
		 */
		mas_set_range(&mas_free, addr + size, last);
		err = mas_store_gfp(&mas_free, ptr, GFP_KERNEL);
		if (err) {
			mas_store_gfp(&mas_busy, NULL, GFP_KERNEL);
			goto out_unlock;
		}
	}
	ptr = (void *)addr;

out_unlock:
	mutex_unlock(mutex);
	return ptr;
}

static int execmem_cache_populate(struct execmem_range *range, size_t size)
{
	unsigned long vm_flags = VM_ALLOW_HUGE_VMAP;
	unsigned long start, end;
	struct vm_struct *vm;
	size_t alloc_size;
	int err = -ENOMEM;
	void *p;

	alloc_size = round_up(size, PMD_SIZE);
	p = execmem_vmalloc(range, alloc_size, PAGE_KERNEL, vm_flags);
	if (!p)
		return err;

	vm = find_vm_area(p);
	if (!vm)
		goto err_free_mem;

	/* fill memory with instructions that will trap */
	execmem_fill_trapping_insns(p, alloc_size, /* writable = */ true);

	start = (unsigned long)p;
	end = start + alloc_size;

	vunmap_range(start, end);

	err = execmem_set_direct_map_valid(vm, false);
	if (err)
		goto err_free_mem;

	err = vmap_pages_range_noflush(start, end, range->pgprot, vm->pages,
				       PMD_SHIFT);
	if (err)
		goto err_free_mem;

	err = execmem_cache_add(p, alloc_size);
	if (err)
		goto err_free_mem;

	return 0;

err_free_mem:
	vfree(p);
	return err;
}

static void *execmem_cache_alloc(struct execmem_range *range, size_t size)
{
	void *p;
	int err;

	p = __execmem_cache_alloc(range, size);
	if (p)
		return p;

	err = execmem_cache_populate(range, size);
	if (err)
		return NULL;

	return __execmem_cache_alloc(range, size);
}

static bool execmem_cache_free(void *ptr)
{
	struct maple_tree *busy_areas = &execmem_cache.busy_areas;
	struct mutex *mutex = &execmem_cache.mutex;
	unsigned long addr = (unsigned long)ptr;
	MA_STATE(mas, busy_areas, addr, addr);
	size_t size;
	void *area;

	mutex_lock(mutex);
	area = mas_walk(&mas);
	if (!area) {
		mutex_unlock(mutex);
		return false;
	}
	size = mas_range_len(&mas);

	mas_store_gfp(&mas, NULL, GFP_KERNEL);
	mutex_unlock(mutex);

	execmem_fill_trapping_insns(ptr, size, /* writable = */ false);

	execmem_cache_add(ptr, size);

	schedule_work(&execmem_cache_clean_work);

	return true;
}
#else /* CONFIG_ARCH_HAS_EXECMEM_ROX */
static void *execmem_cache_alloc(struct execmem_range *range, size_t size)
{
	return NULL;
}

static bool execmem_cache_free(void *ptr)
{
	return false;
}
#endif /* CONFIG_ARCH_HAS_EXECMEM_ROX */

void *execmem_alloc(enum execmem_type type, size_t size)
{
	struct execmem_range *range = &execmem_info->ranges[type];
	bool use_cache = range->flags & EXECMEM_ROX_CACHE;
	unsigned long vm_flags = VM_FLUSH_RESET_PERMS;
	pgprot_t pgprot = range->pgprot;
	void *p;

	if (use_cache)
		p = execmem_cache_alloc(range, size);
	else
		p = execmem_vmalloc(range, size, pgprot, vm_flags);

	return kasan_reset_tag(p);
}

void execmem_free(void *ptr)
{
	/*
	 * This memory may be RO, and freeing RO memory in an interrupt is not
	 * supported by vmalloc.
	 */
	WARN_ON(in_interrupt());

	if (!execmem_cache_free(ptr))
		vfree(ptr);
}

void *execmem_update_copy(void *dst, const void *src, size_t size)
{
	return text_poke_copy(dst, src, size);
}

bool execmem_is_rox(enum execmem_type type)
{
	return !!(execmem_info->ranges[type].flags & EXECMEM_ROX_CACHE);
}

static bool execmem_validate(struct execmem_info *info)
{
	struct execmem_range *r = &info->ranges[EXECMEM_DEFAULT];

	if (!r->alignment || !r->start || !r->end || !pgprot_val(r->pgprot)) {
		pr_crit("Invalid parameters for execmem allocator, module loading will fail");
		return false;
	}

	if (!IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX)) {
		for (int i = EXECMEM_DEFAULT; i < EXECMEM_TYPE_MAX; i++) {
			r = &info->ranges[i];

			if (r->flags & EXECMEM_ROX_CACHE) {
				pr_warn_once("ROX cache is not supported\n");
				r->flags &= ~EXECMEM_ROX_CACHE;
			}
		}
	}

	return true;
}

static void execmem_init_missing(struct execmem_info *info)
{
	struct execmem_range *default_range = &info->ranges[EXECMEM_DEFAULT];

	for (int i = EXECMEM_DEFAULT + 1; i < EXECMEM_TYPE_MAX; i++) {
		struct execmem_range *r = &info->ranges[i];

		if (!r->start) {
			if (i == EXECMEM_MODULE_DATA)
				r->pgprot = PAGE_KERNEL;
			else
				r->pgprot = default_range->pgprot;
			r->alignment = default_range->alignment;
			r->start = default_range->start;
			r->end = default_range->end;
			r->flags = default_range->flags;
			r->fallback_start = default_range->fallback_start;
			r->fallback_end = default_range->fallback_end;
		}
	}
}

struct execmem_info * __weak execmem_arch_setup(void)
{
	return NULL;
}

static void __init __execmem_init(void)
{
	struct execmem_info *info = execmem_arch_setup();

	if (!info) {
		info = execmem_info = &default_execmem_info;
		info->ranges[EXECMEM_DEFAULT].start = VMALLOC_START;
		info->ranges[EXECMEM_DEFAULT].end = VMALLOC_END;
		info->ranges[EXECMEM_DEFAULT].pgprot = PAGE_KERNEL_EXEC;
		info->ranges[EXECMEM_DEFAULT].alignment = 1;
	}

	if (!execmem_validate(info))
		return;

	execmem_init_missing(info);

	execmem_info = info;
}

#ifdef CONFIG_ARCH_WANTS_EXECMEM_LATE
static int __init execmem_late_init(void)
{
	__execmem_init();
	return 0;
}
core_initcall(execmem_late_init);
#else
void __init execmem_init(void)
{
	__execmem_init();
}
#endif