1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
// SPDX-License-Identifier: GPL-2.0
/*
* AArch64 code
*
* Copyright (C) 2018, Red Hat, Inc.
*/
#define _GNU_SOURCE /* for program_invocation_name */
#include <linux/compiler.h>
#include "kvm_util.h"
#include "../kvm_util_internal.h"
#include "processor.h"
#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
#define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN 0xac0000
static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
{
return (v + vm->page_size) & ~(vm->page_size - 1);
}
static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
{
unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;
return (gva >> shift) & mask;
}
static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
{
unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
TEST_ASSERT(vm->pgtable_levels == 4,
"Mode %d does not have 4 page table levels", vm->mode);
return (gva >> shift) & mask;
}
static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
{
unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
TEST_ASSERT(vm->pgtable_levels >= 3,
"Mode %d does not have >= 3 page table levels", vm->mode);
return (gva >> shift) & mask;
}
static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
{
uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
return (gva >> vm->page_shift) & mask;
}
static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
{
uint64_t mask = ((1UL << (vm->va_bits - vm->page_shift)) - 1) << vm->page_shift;
return entry & mask;
}
static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
{
unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
return 1 << (vm->va_bits - shift);
}
static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
{
return 1 << (vm->page_shift - 3);
}
void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot)
{
if (!vm->pgd_created) {
vm_paddr_t paddr = vm_phy_pages_alloc(vm,
page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
vm->pgd = paddr;
vm->pgd_created = true;
}
}
void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
uint32_t pgd_memslot, uint64_t flags)
{
uint8_t attr_idx = flags & 7;
uint64_t *ptep;
TEST_ASSERT((vaddr % vm->page_size) == 0,
"Virtual address not on page boundary,\n"
" vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
(vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx", vaddr);
TEST_ASSERT((paddr % vm->page_size) == 0,
"Physical address not on page boundary,\n"
" paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond beyond maximum supported,\n"
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8;
if (!*ptep) {
*ptep = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
*ptep |= 3;
}
switch (vm->pgtable_levels) {
case 4:
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
if (!*ptep) {
*ptep = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
*ptep |= 3;
}
/* fall through */
case 3:
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
if (!*ptep) {
*ptep = vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
*ptep |= 3;
}
/* fall through */
case 2:
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
break;
default:
TEST_ASSERT(false, "Page table levels must be 2, 3, or 4");
}
*ptep = paddr | 3;
*ptep |= (attr_idx << 2) | (1 << 10) /* Access Flag */;
}
void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
uint32_t pgd_memslot)
{
uint64_t attr_idx = 4; /* NORMAL (See DEFAULT_MAIR_EL1) */
_virt_pg_map(vm, vaddr, paddr, pgd_memslot, attr_idx);
}
vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
uint64_t *ptep;
if (!vm->pgd_created)
goto unmapped_gva;
ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8;
if (!ptep)
goto unmapped_gva;
switch (vm->pgtable_levels) {
case 4:
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
if (!ptep)
goto unmapped_gva;
/* fall through */
case 3:
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
if (!ptep)
goto unmapped_gva;
/* fall through */
case 2:
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
if (!ptep)
goto unmapped_gva;
break;
default:
TEST_ASSERT(false, "Page table levels must be 2, 3, or 4");
}
return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
unmapped_gva:
TEST_ASSERT(false, "No mapping for vm virtual address, "
"gva: 0x%lx", gva);
exit(1);
}
static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
{
#ifdef DEBUG_VM
static const char * const type[] = { "", "pud", "pmd", "pte" };
uint64_t pte, *ptep;
if (level == 4)
return;
for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
ptep = addr_gpa2hva(vm, pte);
if (!*ptep)
continue;
printf("%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
}
#endif
}
void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
int level = 4 - (vm->pgtable_levels - 1);
uint64_t pgd, *ptep;
if (!vm->pgd_created)
return;
for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
ptep = addr_gpa2hva(vm, pgd);
if (!*ptep)
continue;
printf("%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
}
}
struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
void *guest_code)
{
uint64_t ptrs_per_4k_pte = 512;
uint64_t extra_pg_pages = (extra_mem_pages / ptrs_per_4k_pte) * 2;
struct kvm_vm *vm;
vm = vm_create(VM_MODE_DEFAULT, DEFAULT_GUEST_PHY_PAGES + extra_pg_pages, O_RDWR);
kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
vm_vcpu_add_default(vm, vcpuid, guest_code);
return vm;
}
void aarch64_vcpu_setup(struct kvm_vm *vm, int vcpuid, struct kvm_vcpu_init *init)
{
struct kvm_vcpu_init default_init = { .target = -1, };
uint64_t sctlr_el1, tcr_el1;
if (!init)
init = &default_init;
if (init->target == -1) {
struct kvm_vcpu_init preferred;
vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
init->target = preferred.target;
}
vcpu_ioctl(vm, vcpuid, KVM_ARM_VCPU_INIT, init);
/*
* Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
* registers, which the variable argument list macros do.
*/
set_reg(vm, vcpuid, ARM64_SYS_REG(CPACR_EL1), 3 << 20);
get_reg(vm, vcpuid, ARM64_SYS_REG(SCTLR_EL1), &sctlr_el1);
get_reg(vm, vcpuid, ARM64_SYS_REG(TCR_EL1), &tcr_el1);
switch (vm->mode) {
case VM_MODE_P52V48_4K:
TEST_ASSERT(false, "AArch64 does not support 4K sized pages "
"with 52-bit physical address ranges");
case VM_MODE_P52V48_64K:
tcr_el1 |= 1ul << 14; /* TG0 = 64KB */
tcr_el1 |= 6ul << 32; /* IPS = 52 bits */
break;
case VM_MODE_P48V48_4K:
tcr_el1 |= 0ul << 14; /* TG0 = 4KB */
tcr_el1 |= 5ul << 32; /* IPS = 48 bits */
break;
case VM_MODE_P48V48_64K:
tcr_el1 |= 1ul << 14; /* TG0 = 64KB */
tcr_el1 |= 5ul << 32; /* IPS = 48 bits */
break;
case VM_MODE_P40V48_4K:
tcr_el1 |= 0ul << 14; /* TG0 = 4KB */
tcr_el1 |= 2ul << 32; /* IPS = 40 bits */
break;
case VM_MODE_P40V48_64K:
tcr_el1 |= 1ul << 14; /* TG0 = 64KB */
tcr_el1 |= 2ul << 32; /* IPS = 40 bits */
break;
default:
TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode);
}
sctlr_el1 |= (1 << 0) | (1 << 2) | (1 << 12) /* M | C | I */;
/* TCR_EL1 |= IRGN0:WBWA | ORGN0:WBWA | SH0:Inner-Shareable */;
tcr_el1 |= (1 << 8) | (1 << 10) | (3 << 12);
tcr_el1 |= (64 - vm->va_bits) /* T0SZ */;
set_reg(vm, vcpuid, ARM64_SYS_REG(SCTLR_EL1), sctlr_el1);
set_reg(vm, vcpuid, ARM64_SYS_REG(TCR_EL1), tcr_el1);
set_reg(vm, vcpuid, ARM64_SYS_REG(MAIR_EL1), DEFAULT_MAIR_EL1);
set_reg(vm, vcpuid, ARM64_SYS_REG(TTBR0_EL1), vm->pgd);
}
void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
{
uint64_t pstate, pc;
get_reg(vm, vcpuid, ARM64_CORE_REG(regs.pstate), &pstate);
get_reg(vm, vcpuid, ARM64_CORE_REG(regs.pc), &pc);
fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
indent, "", pstate, pc);
}
void aarch64_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid,
struct kvm_vcpu_init *init, void *guest_code)
{
size_t stack_size = vm->page_size == 4096 ?
DEFAULT_STACK_PGS * vm->page_size :
vm->page_size;
uint64_t stack_vaddr = vm_vaddr_alloc(vm, stack_size,
DEFAULT_ARM64_GUEST_STACK_VADDR_MIN, 0, 0);
vm_vcpu_add(vm, vcpuid);
aarch64_vcpu_setup(vm, vcpuid, init);
set_reg(vm, vcpuid, ARM64_CORE_REG(sp_el1), stack_vaddr + stack_size);
set_reg(vm, vcpuid, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
}
void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
{
aarch64_vcpu_add_default(vm, vcpuid, NULL, guest_code);
}
|