1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2023 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>
#include "gsi.h"
#include "reg.h"
#include "gsi_reg.h"
#include "gsi_private.h"
#include "gsi_trans.h"
#include "ipa_gsi.h"
#include "ipa_data.h"
#include "ipa_version.h"
/**
* DOC: The IPA Generic Software Interface
*
* The generic software interface (GSI) is an integral component of the IPA,
* providing a well-defined communication layer between the AP subsystem
* and the IPA core. The modem uses the GSI layer as well.
*
* -------- ---------
* | | | |
* | AP +<---. .----+ Modem |
* | +--. | | .->+ |
* | | | | | | | |
* -------- | | | | ---------
* v | v |
* --+-+---+-+--
* | GSI |
* |-----------|
* | |
* | IPA |
* | |
* -------------
*
* In the above diagram, the AP and Modem represent "execution environments"
* (EEs), which are independent operating environments that use the IPA for
* data transfer.
*
* Each EE uses a set of unidirectional GSI "channels," which allow transfer
* of data to or from the IPA. A channel is implemented as a ring buffer,
* with a DRAM-resident array of "transfer elements" (TREs) available to
* describe transfers to or from other EEs through the IPA. A transfer
* element can also contain an immediate command, requesting the IPA perform
* actions other than data transfer.
*
* Each TRE refers to a block of data--also located in DRAM. After writing
* one or more TREs to a channel, the writer (either the IPA or an EE) writes
* a doorbell register to inform the receiving side how many elements have
* been written.
*
* Each channel has a GSI "event ring" associated with it. An event ring
* is implemented very much like a channel ring, but is always directed from
* the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
* events by adding an entry to the event ring associated with the channel.
* The GSI then writes its doorbell for the event ring, causing the target
* EE to be interrupted. Each entry in an event ring contains a pointer
* to the channel TRE whose completion the event represents.
*
* Each TRE in a channel ring has a set of flags. One flag indicates whether
* the completion of the transfer operation generates an entry (and possibly
* an interrupt) in the channel's event ring. Other flags allow transfer
* elements to be chained together, forming a single logical transaction.
* TRE flags are used to control whether and when interrupts are generated
* to signal completion of channel transfers.
*
* Elements in channel and event rings are completed (or consumed) strictly
* in order. Completion of one entry implies the completion of all preceding
* entries. A single completion interrupt can therefore communicate the
* completion of many transfers.
*
* Note that all GSI registers are little-endian, which is the assumed
* endianness of I/O space accesses. The accessor functions perform byte
* swapping if needed (i.e., for a big endian CPU).
*/
/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
#define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
#define GSI_CMD_TIMEOUT 50 /* milliseconds */
#define GSI_CHANNEL_STOP_RETRIES 10
#define GSI_CHANNEL_MODEM_HALT_RETRIES 10
#define GSI_CHANNEL_MODEM_FLOW_RETRIES 5 /* disable flow control only */
#define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
#define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
/* An entry in an event ring */
struct gsi_event {
__le64 xfer_ptr;
__le16 len;
u8 reserved1;
u8 code;
__le16 reserved2;
u8 type;
u8 chid;
};
/** gsi_channel_scratch_gpi - GPI protocol scratch register
* @max_outstanding_tre:
* Defines the maximum number of TREs allowed in a single transaction
* on a channel (in bytes). This determines the amount of prefetch
* performed by the hardware. We configure this to equal the size of
* the TLV FIFO for the channel.
* @outstanding_threshold:
* Defines the threshold (in bytes) determining when the sequencer
* should update the channel doorbell. We configure this to equal
* the size of two TREs.
*/
struct gsi_channel_scratch_gpi {
u64 reserved1;
u16 reserved2;
u16 max_outstanding_tre;
u16 reserved3;
u16 outstanding_threshold;
};
/** gsi_channel_scratch - channel scratch configuration area
*
* The exact interpretation of this register is protocol-specific.
* We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
*/
union gsi_channel_scratch {
struct gsi_channel_scratch_gpi gpi;
struct {
u32 word1;
u32 word2;
u32 word3;
u32 word4;
} data;
};
/* Check things that can be validated at build time. */
static void gsi_validate_build(void)
{
/* This is used as a divisor */
BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
/* Code assumes the size of channel and event ring element are
* the same (and fixed). Make sure the size of an event ring
* element is what's expected.
*/
BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
/* Hardware requires a 2^n ring size. We ensure the number of
* elements in an event ring is a power of 2 elsewhere; this
* ensure the elements themselves meet the requirement.
*/
BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
}
/* Return the channel id associated with a given channel */
static u32 gsi_channel_id(struct gsi_channel *channel)
{
return channel - &channel->gsi->channel[0];
}
/* An initialized channel has a non-null GSI pointer */
static bool gsi_channel_initialized(struct gsi_channel *channel)
{
return !!channel->gsi;
}
/* Encode the channel protocol for the CH_C_CNTXT_0 register */
static u32 ch_c_cntxt_0_type_encode(enum ipa_version version,
const struct reg *reg,
enum gsi_channel_type type)
{
u32 val;
val = reg_encode(reg, CHTYPE_PROTOCOL, type);
if (version < IPA_VERSION_4_5)
return val;
type >>= hweight32(reg_fmask(reg, CHTYPE_PROTOCOL));
return val | reg_encode(reg, CHTYPE_PROTOCOL_MSB, type);
}
/* Update the GSI IRQ type register with the cached value */
static void gsi_irq_type_update(struct gsi *gsi, u32 val)
{
const struct reg *reg = gsi_reg(gsi, CNTXT_TYPE_IRQ_MSK);
gsi->type_enabled_bitmap = val;
iowrite32(val, gsi->virt + reg_offset(reg));
}
static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
{
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | type_id);
}
static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
{
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~type_id);
}
/* Event ring commands are performed one at a time. Their completion
* is signaled by the event ring control GSI interrupt type, which is
* only enabled when we issue an event ring command. Only the event
* ring being operated on has this interrupt enabled.
*/
static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
{
u32 val = BIT(evt_ring_id);
const struct reg *reg;
/* There's a small chance that a previous command completed
* after the interrupt was disabled, so make sure we have no
* pending interrupts before we enable them.
*/
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
iowrite32(~0, gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
iowrite32(val, gsi->virt + reg_offset(reg));
gsi_irq_type_enable(gsi, GSI_EV_CTRL);
}
/* Disable event ring control interrupts */
static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
{
const struct reg *reg;
gsi_irq_type_disable(gsi, GSI_EV_CTRL);
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
iowrite32(0, gsi->virt + reg_offset(reg));
}
/* Channel commands are performed one at a time. Their completion is
* signaled by the channel control GSI interrupt type, which is only
* enabled when we issue a channel command. Only the channel being
* operated on has this interrupt enabled.
*/
static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
{
u32 val = BIT(channel_id);
const struct reg *reg;
/* There's a small chance that a previous command completed
* after the interrupt was disabled, so make sure we have no
* pending interrupts before we enable them.
*/
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
iowrite32(~0, gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
iowrite32(val, gsi->virt + reg_offset(reg));
gsi_irq_type_enable(gsi, GSI_CH_CTRL);
}
/* Disable channel control interrupts */
static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
{
const struct reg *reg;
gsi_irq_type_disable(gsi, GSI_CH_CTRL);
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
iowrite32(0, gsi->virt + reg_offset(reg));
}
static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
{
bool enable_ieob = !gsi->ieob_enabled_bitmap;
const struct reg *reg;
u32 val;
gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
val = gsi->ieob_enabled_bitmap;
iowrite32(val, gsi->virt + reg_offset(reg));
/* Enable the interrupt type if this is the first channel enabled */
if (enable_ieob)
gsi_irq_type_enable(gsi, GSI_IEOB);
}
static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
{
const struct reg *reg;
u32 val;
gsi->ieob_enabled_bitmap &= ~event_mask;
/* Disable the interrupt type if this was the last enabled channel */
if (!gsi->ieob_enabled_bitmap)
gsi_irq_type_disable(gsi, GSI_IEOB);
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
val = gsi->ieob_enabled_bitmap;
iowrite32(val, gsi->virt + reg_offset(reg));
}
static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
{
gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
}
/* Enable all GSI_interrupt types */
static void gsi_irq_enable(struct gsi *gsi)
{
const struct reg *reg;
u32 val;
/* Global interrupts include hardware error reports. Enable
* that so we can at least report the error should it occur.
*/
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GLOB_EE);
/* General GSI interrupts are reported to all EEs; if they occur
* they are unrecoverable (without reset). A breakpoint interrupt
* also exists, but we don't support that. We want to be notified
* of errors so we can report them, even if they can't be handled.
*/
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
val = BUS_ERROR;
val |= CMD_FIFO_OVRFLOW;
val |= MCS_STACK_OVRFLOW;
iowrite32(val, gsi->virt + reg_offset(reg));
gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | GSI_GENERAL);
}
/* Disable all GSI interrupt types */
static void gsi_irq_disable(struct gsi *gsi)
{
const struct reg *reg;
gsi_irq_type_update(gsi, 0);
/* Clear the type-specific interrupt masks set by gsi_irq_enable() */
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
iowrite32(0, gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
iowrite32(0, gsi->virt + reg_offset(reg));
}
/* Return the virtual address associated with a ring index */
void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
{
/* Note: index *must* be used modulo the ring count here */
return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
}
/* Return the 32-bit DMA address associated with a ring index */
static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
{
return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
}
/* Return the ring index of a 32-bit ring offset */
static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
{
return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
}
/* Issue a GSI command by writing a value to a register, then wait for
* completion to be signaled. Returns true if the command completes
* or false if it times out.
*/
static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
{
unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
struct completion *completion = &gsi->completion;
reinit_completion(completion);
iowrite32(val, gsi->virt + reg);
return !!wait_for_completion_timeout(completion, timeout);
}
/* Return the hardware's notion of the current state of an event ring */
static enum gsi_evt_ring_state
gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
{
const struct reg *reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
u32 val;
val = ioread32(gsi->virt + reg_n_offset(reg, evt_ring_id));
return reg_decode(reg, EV_CHSTATE, val);
}
/* Issue an event ring command and wait for it to complete */
static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
enum gsi_evt_cmd_opcode opcode)
{
struct device *dev = gsi->dev;
const struct reg *reg;
bool timeout;
u32 val;
/* Enable the completion interrupt for the command */
gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
reg = gsi_reg(gsi, EV_CH_CMD);
val = reg_encode(reg, EV_CHID, evt_ring_id);
val |= reg_encode(reg, EV_OPCODE, opcode);
timeout = !gsi_command(gsi, reg_offset(reg), val);
gsi_irq_ev_ctrl_disable(gsi);
if (!timeout)
return;
dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
}
/* Allocate an event ring in NOT_ALLOCATED state */
static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
{
enum gsi_evt_ring_state state;
/* Get initial event ring state */
state = gsi_evt_ring_state(gsi, evt_ring_id);
if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
evt_ring_id, state);
return -EINVAL;
}
gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
/* If successful the event ring state will have changed */
state = gsi_evt_ring_state(gsi, evt_ring_id);
if (state == GSI_EVT_RING_STATE_ALLOCATED)
return 0;
dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
evt_ring_id, state);
return -EIO;
}
/* Reset a GSI event ring in ALLOCATED or ERROR state. */
static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
{
enum gsi_evt_ring_state state;
state = gsi_evt_ring_state(gsi, evt_ring_id);
if (state != GSI_EVT_RING_STATE_ALLOCATED &&
state != GSI_EVT_RING_STATE_ERROR) {
dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
evt_ring_id, state);
return;
}
gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
/* If successful the event ring state will have changed */
state = gsi_evt_ring_state(gsi, evt_ring_id);
if (state == GSI_EVT_RING_STATE_ALLOCATED)
return;
dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
evt_ring_id, state);
}
/* Issue a hardware de-allocation request for an allocated event ring */
static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
{
enum gsi_evt_ring_state state;
state = gsi_evt_ring_state(gsi, evt_ring_id);
if (state != GSI_EVT_RING_STATE_ALLOCATED) {
dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
evt_ring_id, state);
return;
}
gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
/* If successful the event ring state will have changed */
state = gsi_evt_ring_state(gsi, evt_ring_id);
if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
return;
dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
evt_ring_id, state);
}
/* Fetch the current state of a channel from hardware */
static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
{
const struct reg *reg = gsi_reg(channel->gsi, CH_C_CNTXT_0);
u32 channel_id = gsi_channel_id(channel);
struct gsi *gsi = channel->gsi;
void __iomem *virt = gsi->virt;
u32 val;
reg = gsi_reg(gsi, CH_C_CNTXT_0);
val = ioread32(virt + reg_n_offset(reg, channel_id));
return reg_decode(reg, CHSTATE, val);
}
/* Issue a channel command and wait for it to complete */
static void
gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
{
u32 channel_id = gsi_channel_id(channel);
struct gsi *gsi = channel->gsi;
struct device *dev = gsi->dev;
const struct reg *reg;
bool timeout;
u32 val;
/* Enable the completion interrupt for the command */
gsi_irq_ch_ctrl_enable(gsi, channel_id);
reg = gsi_reg(gsi, CH_CMD);
val = reg_encode(reg, CH_CHID, channel_id);
val |= reg_encode(reg, CH_OPCODE, opcode);
timeout = !gsi_command(gsi, reg_offset(reg), val);
gsi_irq_ch_ctrl_disable(gsi);
if (!timeout)
return;
dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
opcode, channel_id, gsi_channel_state(channel));
}
/* Allocate GSI channel in NOT_ALLOCATED state */
static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
struct device *dev = gsi->dev;
enum gsi_channel_state state;
/* Get initial channel state */
state = gsi_channel_state(channel);
if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
dev_err(dev, "channel %u bad state %u before alloc\n",
channel_id, state);
return -EINVAL;
}
gsi_channel_command(channel, GSI_CH_ALLOCATE);
/* If successful the channel state will have changed */
state = gsi_channel_state(channel);
if (state == GSI_CHANNEL_STATE_ALLOCATED)
return 0;
dev_err(dev, "channel %u bad state %u after alloc\n",
channel_id, state);
return -EIO;
}
/* Start an ALLOCATED channel */
static int gsi_channel_start_command(struct gsi_channel *channel)
{
struct device *dev = channel->gsi->dev;
enum gsi_channel_state state;
state = gsi_channel_state(channel);
if (state != GSI_CHANNEL_STATE_ALLOCATED &&
state != GSI_CHANNEL_STATE_STOPPED) {
dev_err(dev, "channel %u bad state %u before start\n",
gsi_channel_id(channel), state);
return -EINVAL;
}
gsi_channel_command(channel, GSI_CH_START);
/* If successful the channel state will have changed */
state = gsi_channel_state(channel);
if (state == GSI_CHANNEL_STATE_STARTED)
return 0;
dev_err(dev, "channel %u bad state %u after start\n",
gsi_channel_id(channel), state);
return -EIO;
}
/* Stop a GSI channel in STARTED state */
static int gsi_channel_stop_command(struct gsi_channel *channel)
{
struct device *dev = channel->gsi->dev;
enum gsi_channel_state state;
state = gsi_channel_state(channel);
/* Channel could have entered STOPPED state since last call
* if it timed out. If so, we're done.
*/
if (state == GSI_CHANNEL_STATE_STOPPED)
return 0;
if (state != GSI_CHANNEL_STATE_STARTED &&
state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
dev_err(dev, "channel %u bad state %u before stop\n",
gsi_channel_id(channel), state);
return -EINVAL;
}
gsi_channel_command(channel, GSI_CH_STOP);
/* If successful the channel state will have changed */
state = gsi_channel_state(channel);
if (state == GSI_CHANNEL_STATE_STOPPED)
return 0;
/* We may have to try again if stop is in progress */
if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
return -EAGAIN;
dev_err(dev, "channel %u bad state %u after stop\n",
gsi_channel_id(channel), state);
return -EIO;
}
/* Reset a GSI channel in ALLOCATED or ERROR state. */
static void gsi_channel_reset_command(struct gsi_channel *channel)
{
struct device *dev = channel->gsi->dev;
enum gsi_channel_state state;
/* A short delay is required before a RESET command */
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
state = gsi_channel_state(channel);
if (state != GSI_CHANNEL_STATE_STOPPED &&
state != GSI_CHANNEL_STATE_ERROR) {
/* No need to reset a channel already in ALLOCATED state */
if (state != GSI_CHANNEL_STATE_ALLOCATED)
dev_err(dev, "channel %u bad state %u before reset\n",
gsi_channel_id(channel), state);
return;
}
gsi_channel_command(channel, GSI_CH_RESET);
/* If successful the channel state will have changed */
state = gsi_channel_state(channel);
if (state != GSI_CHANNEL_STATE_ALLOCATED)
dev_err(dev, "channel %u bad state %u after reset\n",
gsi_channel_id(channel), state);
}
/* Deallocate an ALLOCATED GSI channel */
static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
struct device *dev = gsi->dev;
enum gsi_channel_state state;
state = gsi_channel_state(channel);
if (state != GSI_CHANNEL_STATE_ALLOCATED) {
dev_err(dev, "channel %u bad state %u before dealloc\n",
channel_id, state);
return;
}
gsi_channel_command(channel, GSI_CH_DE_ALLOC);
/* If successful the channel state will have changed */
state = gsi_channel_state(channel);
if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
dev_err(dev, "channel %u bad state %u after dealloc\n",
channel_id, state);
}
/* Ring an event ring doorbell, reporting the last entry processed by the AP.
* The index argument (modulo the ring count) is the first unfilled entry, so
* we supply one less than that with the doorbell. Update the event ring
* index field with the value provided.
*/
static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
{
const struct reg *reg = gsi_reg(gsi, EV_CH_E_DOORBELL_0);
struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
u32 val;
ring->index = index; /* Next unused entry */
/* Note: index *must* be used modulo the ring count here */
val = gsi_ring_addr(ring, (index - 1) % ring->count);
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
}
/* Program an event ring for use */
static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
{
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
struct gsi_ring *ring = &evt_ring->ring;
const struct reg *reg;
u32 val;
reg = gsi_reg(gsi, EV_CH_E_CNTXT_0);
/* We program all event rings as GPI type/protocol */
val = reg_encode(reg, EV_CHTYPE, GSI_CHANNEL_TYPE_GPI);
/* EV_EE field is 0 (GSI_EE_AP) */
val |= reg_bit(reg, EV_INTYPE);
val |= reg_encode(reg, EV_ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
reg = gsi_reg(gsi, EV_CH_E_CNTXT_1);
val = reg_encode(reg, R_LENGTH, ring->count * GSI_RING_ELEMENT_SIZE);
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
/* The context 2 and 3 registers store the low-order and
* high-order 32 bits of the address of the event ring,
* respectively.
*/
reg = gsi_reg(gsi, EV_CH_E_CNTXT_2);
val = lower_32_bits(ring->addr);
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
reg = gsi_reg(gsi, EV_CH_E_CNTXT_3);
val = upper_32_bits(ring->addr);
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
/* Enable interrupt moderation by setting the moderation delay */
reg = gsi_reg(gsi, EV_CH_E_CNTXT_8);
val = reg_encode(reg, EV_MODT, GSI_EVT_RING_INT_MODT);
val |= reg_encode(reg, EV_MODC, 1); /* comes from channel */
/* EV_MOD_CNT is 0 (no counter-based interrupt coalescing) */
iowrite32(val, gsi->virt + reg_n_offset(reg, evt_ring_id));
/* No MSI write data, and MSI high and low address is 0 */
reg = gsi_reg(gsi, EV_CH_E_CNTXT_9);
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
reg = gsi_reg(gsi, EV_CH_E_CNTXT_10);
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
reg = gsi_reg(gsi, EV_CH_E_CNTXT_11);
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
/* We don't need to get event read pointer updates */
reg = gsi_reg(gsi, EV_CH_E_CNTXT_12);
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
reg = gsi_reg(gsi, EV_CH_E_CNTXT_13);
iowrite32(0, gsi->virt + reg_n_offset(reg, evt_ring_id));
/* Finally, tell the hardware our "last processed" event (arbitrary) */
gsi_evt_ring_doorbell(gsi, evt_ring_id, ring->index);
}
/* Find the transaction whose completion indicates a channel is quiesced */
static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
{
struct gsi_trans_info *trans_info = &channel->trans_info;
u32 pending_id = trans_info->pending_id;
struct gsi_trans *trans;
u16 trans_id;
if (channel->toward_ipa && pending_id != trans_info->free_id) {
/* There is a small chance a TX transaction got allocated
* just before we disabled transmits, so check for that.
* The last allocated, committed, or pending transaction
* precedes the first free transaction.
*/
trans_id = trans_info->free_id - 1;
} else if (trans_info->polled_id != pending_id) {
/* Otherwise (TX or RX) we want to wait for anything that
* has completed, or has been polled but not released yet.
*
* The last completed or polled transaction precedes the
* first pending transaction.
*/
trans_id = pending_id - 1;
} else {
return NULL;
}
/* Caller will wait for this, so take a reference */
trans = &trans_info->trans[trans_id % channel->tre_count];
refcount_inc(&trans->refcount);
return trans;
}
/* Wait for transaction activity on a channel to complete */
static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
{
struct gsi_trans *trans;
/* Get the last transaction, and wait for it to complete */
trans = gsi_channel_trans_last(channel);
if (trans) {
wait_for_completion(&trans->completion);
gsi_trans_free(trans);
}
}
/* Program a channel for use; there is no gsi_channel_deprogram() */
static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
{
size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
u32 channel_id = gsi_channel_id(channel);
union gsi_channel_scratch scr = { };
struct gsi_channel_scratch_gpi *gpi;
struct gsi *gsi = channel->gsi;
const struct reg *reg;
u32 wrr_weight = 0;
u32 offset;
u32 val;
reg = gsi_reg(gsi, CH_C_CNTXT_0);
/* We program all channels as GPI type/protocol */
val = ch_c_cntxt_0_type_encode(gsi->version, reg, GSI_CHANNEL_TYPE_GPI);
if (channel->toward_ipa)
val |= reg_bit(reg, CHTYPE_DIR);
val |= reg_encode(reg, ERINDEX, channel->evt_ring_id);
val |= reg_encode(reg, ELEMENT_SIZE, GSI_RING_ELEMENT_SIZE);
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
reg = gsi_reg(gsi, CH_C_CNTXT_1);
val = reg_encode(reg, CH_R_LENGTH, size);
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
/* The context 2 and 3 registers store the low-order and
* high-order 32 bits of the address of the channel ring,
* respectively.
*/
reg = gsi_reg(gsi, CH_C_CNTXT_2);
val = lower_32_bits(channel->tre_ring.addr);
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
reg = gsi_reg(gsi, CH_C_CNTXT_3);
val = upper_32_bits(channel->tre_ring.addr);
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
reg = gsi_reg(gsi, CH_C_QOS);
/* Command channel gets low weighted round-robin priority */
if (channel->command)
wrr_weight = reg_field_max(reg, WRR_WEIGHT);
val = reg_encode(reg, WRR_WEIGHT, wrr_weight);
/* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
/* No need to use the doorbell engine starting at IPA v4.0 */
if (gsi->version < IPA_VERSION_4_0 && doorbell)
val |= reg_bit(reg, USE_DB_ENG);
/* v4.0 introduces an escape buffer for prefetch. We use it
* on all but the AP command channel.
*/
if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
/* If not otherwise set, prefetch buffers are used */
if (gsi->version < IPA_VERSION_4_5)
val |= reg_bit(reg, USE_ESCAPE_BUF_ONLY);
else
val |= reg_encode(reg, PREFETCH_MODE, ESCAPE_BUF_ONLY);
}
/* All channels set DB_IN_BYTES */
if (gsi->version >= IPA_VERSION_4_9)
val |= reg_bit(reg, DB_IN_BYTES);
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
/* Now update the scratch registers for GPI protocol */
gpi = &scr.gpi;
gpi->max_outstanding_tre = channel->trans_tre_max *
GSI_RING_ELEMENT_SIZE;
gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
reg = gsi_reg(gsi, CH_C_SCRATCH_0);
val = scr.data.word1;
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
reg = gsi_reg(gsi, CH_C_SCRATCH_1);
val = scr.data.word2;
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
reg = gsi_reg(gsi, CH_C_SCRATCH_2);
val = scr.data.word3;
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
/* We must preserve the upper 16 bits of the last scratch register.
* The next sequence assumes those bits remain unchanged between the
* read and the write.
*/
reg = gsi_reg(gsi, CH_C_SCRATCH_3);
offset = reg_n_offset(reg, channel_id);
val = ioread32(gsi->virt + offset);
val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
iowrite32(val, gsi->virt + offset);
/* All done! */
}
static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
{
struct gsi *gsi = channel->gsi;
int ret;
/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
if (resume && gsi->version < IPA_VERSION_4_0)
return 0;
mutex_lock(&gsi->mutex);
ret = gsi_channel_start_command(channel);
mutex_unlock(&gsi->mutex);
return ret;
}
/* Start an allocated GSI channel */
int gsi_channel_start(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
int ret;
/* Enable NAPI and the completion interrupt */
napi_enable(&channel->napi);
gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
ret = __gsi_channel_start(channel, false);
if (ret) {
gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
napi_disable(&channel->napi);
}
return ret;
}
static int gsi_channel_stop_retry(struct gsi_channel *channel)
{
u32 retries = GSI_CHANNEL_STOP_RETRIES;
int ret;
do {
ret = gsi_channel_stop_command(channel);
if (ret != -EAGAIN)
break;
usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
} while (retries--);
return ret;
}
static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
{
struct gsi *gsi = channel->gsi;
int ret;
/* Wait for any underway transactions to complete before stopping. */
gsi_channel_trans_quiesce(channel);
/* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
if (suspend && gsi->version < IPA_VERSION_4_0)
return 0;
mutex_lock(&gsi->mutex);
ret = gsi_channel_stop_retry(channel);
mutex_unlock(&gsi->mutex);
return ret;
}
/* Stop a started channel */
int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
int ret;
ret = __gsi_channel_stop(channel, false);
if (ret)
return ret;
/* Disable the completion interrupt and NAPI if successful */
gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
napi_disable(&channel->napi);
return 0;
}
/* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
mutex_lock(&gsi->mutex);
gsi_channel_reset_command(channel);
/* Due to a hardware quirk we may need to reset RX channels twice. */
if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
gsi_channel_reset_command(channel);
/* Hardware assumes this is 0 following reset */
channel->tre_ring.index = 0;
gsi_channel_program(channel, doorbell);
gsi_channel_trans_cancel_pending(channel);
mutex_unlock(&gsi->mutex);
}
/* Stop a started channel for suspend */
int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
int ret;
ret = __gsi_channel_stop(channel, true);
if (ret)
return ret;
/* Ensure NAPI polling has finished. */
napi_synchronize(&channel->napi);
return 0;
}
/* Resume a suspended channel (starting if stopped) */
int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
return __gsi_channel_start(channel, true);
}
/* Prevent all GSI interrupts while suspended */
void gsi_suspend(struct gsi *gsi)
{
disable_irq(gsi->irq);
}
/* Allow all GSI interrupts again when resuming */
void gsi_resume(struct gsi *gsi)
{
enable_irq(gsi->irq);
}
void gsi_trans_tx_committed(struct gsi_trans *trans)
{
struct gsi_channel *channel = &trans->gsi->channel[trans->channel_id];
channel->trans_count++;
channel->byte_count += trans->len;
trans->trans_count = channel->trans_count;
trans->byte_count = channel->byte_count;
}
void gsi_trans_tx_queued(struct gsi_trans *trans)
{
u32 channel_id = trans->channel_id;
struct gsi *gsi = trans->gsi;
struct gsi_channel *channel;
u32 trans_count;
u32 byte_count;
channel = &gsi->channel[channel_id];
byte_count = channel->byte_count - channel->queued_byte_count;
trans_count = channel->trans_count - channel->queued_trans_count;
channel->queued_byte_count = channel->byte_count;
channel->queued_trans_count = channel->trans_count;
ipa_gsi_channel_tx_queued(gsi, channel_id, trans_count, byte_count);
}
/**
* gsi_trans_tx_completed() - Report completed TX transactions
* @trans: TX channel transaction that has completed
*
* Report that a transaction on a TX channel has completed. At the time a
* transaction is committed, we record *in the transaction* its channel's
* committed transaction and byte counts. Transactions are completed in
* order, and the difference between the channel's byte/transaction count
* when the transaction was committed and when it completes tells us
* exactly how much data has been transferred while the transaction was
* pending.
*
* We report this information to the network stack, which uses it to manage
* the rate at which data is sent to hardware.
*/
static void gsi_trans_tx_completed(struct gsi_trans *trans)
{
u32 channel_id = trans->channel_id;
struct gsi *gsi = trans->gsi;
struct gsi_channel *channel;
u32 trans_count;
u32 byte_count;
channel = &gsi->channel[channel_id];
trans_count = trans->trans_count - channel->compl_trans_count;
byte_count = trans->byte_count - channel->compl_byte_count;
channel->compl_trans_count += trans_count;
channel->compl_byte_count += byte_count;
ipa_gsi_channel_tx_completed(gsi, channel_id, trans_count, byte_count);
}
/* Channel control interrupt handler */
static void gsi_isr_chan_ctrl(struct gsi *gsi)
{
const struct reg *reg;
u32 channel_mask;
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ);
channel_mask = ioread32(gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_CLR);
iowrite32(channel_mask, gsi->virt + reg_offset(reg));
while (channel_mask) {
u32 channel_id = __ffs(channel_mask);
channel_mask ^= BIT(channel_id);
complete(&gsi->completion);
}
}
/* Event ring control interrupt handler */
static void gsi_isr_evt_ctrl(struct gsi *gsi)
{
const struct reg *reg;
u32 event_mask;
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ);
event_mask = ioread32(gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_CLR);
iowrite32(event_mask, gsi->virt + reg_offset(reg));
while (event_mask) {
u32 evt_ring_id = __ffs(event_mask);
event_mask ^= BIT(evt_ring_id);
complete(&gsi->completion);
}
}
/* Global channel error interrupt handler */
static void
gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
{
if (code == GSI_OUT_OF_RESOURCES) {
dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
complete(&gsi->completion);
return;
}
/* Report, but otherwise ignore all other error codes */
dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
channel_id, err_ee, code);
}
/* Global event error interrupt handler */
static void
gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
{
if (code == GSI_OUT_OF_RESOURCES) {
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
u32 channel_id = gsi_channel_id(evt_ring->channel);
complete(&gsi->completion);
dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
channel_id);
return;
}
/* Report, but otherwise ignore all other error codes */
dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
evt_ring_id, err_ee, code);
}
/* Global error interrupt handler */
static void gsi_isr_glob_err(struct gsi *gsi)
{
const struct reg *log_reg;
const struct reg *clr_reg;
enum gsi_err_type type;
enum gsi_err_code code;
u32 offset;
u32 which;
u32 val;
u32 ee;
/* Get the logged error, then reinitialize the log */
log_reg = gsi_reg(gsi, ERROR_LOG);
offset = reg_offset(log_reg);
val = ioread32(gsi->virt + offset);
iowrite32(0, gsi->virt + offset);
clr_reg = gsi_reg(gsi, ERROR_LOG_CLR);
iowrite32(~0, gsi->virt + reg_offset(clr_reg));
/* Parse the error value */
ee = reg_decode(log_reg, ERR_EE, val);
type = reg_decode(log_reg, ERR_TYPE, val);
which = reg_decode(log_reg, ERR_VIRT_IDX, val);
code = reg_decode(log_reg, ERR_CODE, val);
if (type == GSI_ERR_TYPE_CHAN)
gsi_isr_glob_chan_err(gsi, ee, which, code);
else if (type == GSI_ERR_TYPE_EVT)
gsi_isr_glob_evt_err(gsi, ee, which, code);
else /* type GSI_ERR_TYPE_GLOB should be fatal */
dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
}
/* Generic EE interrupt handler */
static void gsi_isr_gp_int1(struct gsi *gsi)
{
const struct reg *reg;
u32 result;
u32 val;
/* This interrupt is used to handle completions of GENERIC GSI
* commands. We use these to allocate and halt channels on the
* modem's behalf due to a hardware quirk on IPA v4.2. The modem
* "owns" channels even when the AP allocates them, and have no
* way of knowing whether a modem channel's state has been changed.
*
* We also use GENERIC commands to enable/disable channel flow
* control for IPA v4.2+.
*
* It is recommended that we halt the modem channels we allocated
* when shutting down, but it's possible the channel isn't running
* at the time we issue the HALT command. We'll get an error in
* that case, but it's harmless (the channel is already halted).
* Similarly, we could get an error back when updating flow control
* on a channel because it's not in the proper state.
*
* In either case, we silently ignore a INCORRECT_CHANNEL_STATE
* error if we receive it.
*/
reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
val = ioread32(gsi->virt + reg_offset(reg));
result = reg_decode(reg, GENERIC_EE_RESULT, val);
switch (result) {
case GENERIC_EE_SUCCESS:
case GENERIC_EE_INCORRECT_CHANNEL_STATE:
gsi->result = 0;
break;
case GENERIC_EE_RETRY:
gsi->result = -EAGAIN;
break;
default:
dev_err(gsi->dev, "global INT1 generic result %u\n", result);
gsi->result = -EIO;
break;
}
complete(&gsi->completion);
}
/* Inter-EE interrupt handler */
static void gsi_isr_glob_ee(struct gsi *gsi)
{
const struct reg *reg;
u32 val;
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_STTS);
val = ioread32(gsi->virt + reg_offset(reg));
if (val & ERROR_INT)
gsi_isr_glob_err(gsi);
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_CLR);
iowrite32(val, gsi->virt + reg_offset(reg));
val &= ~ERROR_INT;
if (val & GP_INT1) {
val ^= GP_INT1;
gsi_isr_gp_int1(gsi);
}
if (val)
dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
}
/* I/O completion interrupt event */
static void gsi_isr_ieob(struct gsi *gsi)
{
const struct reg *reg;
u32 event_mask;
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ);
event_mask = ioread32(gsi->virt + reg_offset(reg));
gsi_irq_ieob_disable(gsi, event_mask);
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_CLR);
iowrite32(event_mask, gsi->virt + reg_offset(reg));
while (event_mask) {
u32 evt_ring_id = __ffs(event_mask);
event_mask ^= BIT(evt_ring_id);
napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
}
}
/* General event interrupts represent serious problems, so report them */
static void gsi_isr_general(struct gsi *gsi)
{
struct device *dev = gsi->dev;
const struct reg *reg;
u32 val;
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_STTS);
val = ioread32(gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_CLR);
iowrite32(val, gsi->virt + reg_offset(reg));
dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
}
/**
* gsi_isr() - Top level GSI interrupt service routine
* @irq: Interrupt number (ignored)
* @dev_id: GSI pointer supplied to request_irq()
*
* This is the main handler function registered for the GSI IRQ. Each type
* of interrupt has a separate handler function that is called from here.
*/
static irqreturn_t gsi_isr(int irq, void *dev_id)
{
struct gsi *gsi = dev_id;
const struct reg *reg;
u32 intr_mask;
u32 cnt = 0;
u32 offset;
reg = gsi_reg(gsi, CNTXT_TYPE_IRQ);
offset = reg_offset(reg);
/* enum gsi_irq_type_id defines GSI interrupt types */
while ((intr_mask = ioread32(gsi->virt + offset))) {
/* intr_mask contains bitmask of pending GSI interrupts */
do {
u32 gsi_intr = BIT(__ffs(intr_mask));
intr_mask ^= gsi_intr;
/* Note: the IRQ condition for each type is cleared
* when the type-specific register is updated.
*/
switch (gsi_intr) {
case GSI_CH_CTRL:
gsi_isr_chan_ctrl(gsi);
break;
case GSI_EV_CTRL:
gsi_isr_evt_ctrl(gsi);
break;
case GSI_GLOB_EE:
gsi_isr_glob_ee(gsi);
break;
case GSI_IEOB:
gsi_isr_ieob(gsi);
break;
case GSI_GENERAL:
gsi_isr_general(gsi);
break;
default:
dev_err(gsi->dev,
"unrecognized interrupt type 0x%08x\n",
gsi_intr);
break;
}
} while (intr_mask);
if (++cnt > GSI_ISR_MAX_ITER) {
dev_err(gsi->dev, "interrupt flood\n");
break;
}
}
return IRQ_HANDLED;
}
/* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
{
int ret;
ret = platform_get_irq_byname(pdev, "gsi");
if (ret <= 0)
return ret ? : -EINVAL;
gsi->irq = ret;
return 0;
}
/* Return the transaction associated with a transfer completion event */
static struct gsi_trans *
gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
{
u32 channel_id = event->chid;
struct gsi_channel *channel;
struct gsi_trans *trans;
u32 tre_offset;
u32 tre_index;
channel = &gsi->channel[channel_id];
if (WARN(!channel->gsi, "event has bad channel %u\n", channel_id))
return NULL;
/* Event xfer_ptr records the TRE it's associated with */
tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
trans = gsi_channel_trans_mapped(channel, tre_index);
if (WARN(!trans, "channel %u event with no transaction\n", channel_id))
return NULL;
return trans;
}
/**
* gsi_evt_ring_update() - Update transaction state from hardware
* @gsi: GSI pointer
* @evt_ring_id: Event ring ID
* @index: Event index in ring reported by hardware
*
* Events for RX channels contain the actual number of bytes received into
* the buffer. Every event has a transaction associated with it, and here
* we update transactions to record their actual received lengths.
*
* When an event for a TX channel arrives we use information in the
* transaction to report the number of requests and bytes that have
* been transferred.
*
* This function is called whenever we learn that the GSI hardware has filled
* new events since the last time we checked. The ring's index field tells
* the first entry in need of processing. The index provided is the
* first *unfilled* event in the ring (following the last filled one).
*
* Events are sequential within the event ring, and transactions are
* sequential within the transaction array.
*
* Note that @index always refers to an element *within* the event ring.
*/
static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
{
struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
struct gsi_ring *ring = &evt_ring->ring;
struct gsi_event *event_done;
struct gsi_event *event;
u32 event_avail;
u32 old_index;
/* Starting with the oldest un-processed event, determine which
* transaction (and which channel) is associated with the event.
* For RX channels, update each completed transaction with the
* number of bytes that were actually received. For TX channels
* associated with a network device, report to the network stack
* the number of transfers and bytes this completion represents.
*/
old_index = ring->index;
event = gsi_ring_virt(ring, old_index);
/* Compute the number of events to process before we wrap,
* and determine when we'll be done processing events.
*/
event_avail = ring->count - old_index % ring->count;
event_done = gsi_ring_virt(ring, index);
do {
struct gsi_trans *trans;
trans = gsi_event_trans(gsi, event);
if (!trans)
return;
if (trans->direction == DMA_FROM_DEVICE)
trans->len = __le16_to_cpu(event->len);
else
gsi_trans_tx_completed(trans);
gsi_trans_move_complete(trans);
/* Move on to the next event and transaction */
if (--event_avail)
event++;
else
event = gsi_ring_virt(ring, 0);
} while (event != event_done);
/* Tell the hardware we've handled these events */
gsi_evt_ring_doorbell(gsi, evt_ring_id, index);
}
/* Initialize a ring, including allocating DMA memory for its entries */
static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
{
u32 size = count * GSI_RING_ELEMENT_SIZE;
struct device *dev = gsi->dev;
dma_addr_t addr;
/* Hardware requires a 2^n ring size, with alignment equal to size.
* The DMA address returned by dma_alloc_coherent() is guaranteed to
* be a power-of-2 number of pages, which satisfies the requirement.
*/
ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
if (!ring->virt)
return -ENOMEM;
ring->addr = addr;
ring->count = count;
ring->index = 0;
return 0;
}
/* Free a previously-allocated ring */
static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
{
size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
}
/* Allocate an available event ring id */
static int gsi_evt_ring_id_alloc(struct gsi *gsi)
{
u32 evt_ring_id;
if (gsi->event_bitmap == ~0U) {
dev_err(gsi->dev, "event rings exhausted\n");
return -ENOSPC;
}
evt_ring_id = ffz(gsi->event_bitmap);
gsi->event_bitmap |= BIT(evt_ring_id);
return (int)evt_ring_id;
}
/* Free a previously-allocated event ring id */
static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
{
gsi->event_bitmap &= ~BIT(evt_ring_id);
}
/* Ring a channel doorbell, reporting the first un-filled entry */
void gsi_channel_doorbell(struct gsi_channel *channel)
{
struct gsi_ring *tre_ring = &channel->tre_ring;
u32 channel_id = gsi_channel_id(channel);
struct gsi *gsi = channel->gsi;
const struct reg *reg;
u32 val;
reg = gsi_reg(gsi, CH_C_DOORBELL_0);
/* Note: index *must* be used modulo the ring count here */
val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
iowrite32(val, gsi->virt + reg_n_offset(reg, channel_id));
}
/* Consult hardware, move newly completed transactions to completed state */
void gsi_channel_update(struct gsi_channel *channel)
{
u32 evt_ring_id = channel->evt_ring_id;
struct gsi *gsi = channel->gsi;
struct gsi_evt_ring *evt_ring;
struct gsi_trans *trans;
struct gsi_ring *ring;
const struct reg *reg;
u32 offset;
u32 index;
evt_ring = &gsi->evt_ring[evt_ring_id];
ring = &evt_ring->ring;
/* See if there's anything new to process; if not, we're done. Note
* that index always refers to an entry *within* the event ring.
*/
reg = gsi_reg(gsi, EV_CH_E_CNTXT_4);
offset = reg_n_offset(reg, evt_ring_id);
index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
if (index == ring->index % ring->count)
return;
/* Get the transaction for the latest completed event. */
trans = gsi_event_trans(gsi, gsi_ring_virt(ring, index - 1));
if (!trans)
return;
/* For RX channels, update each completed transaction with the number
* of bytes that were actually received. For TX channels, report
* the number of transactions and bytes this completion represents
* up the network stack.
*/
gsi_evt_ring_update(gsi, evt_ring_id, index);
}
/**
* gsi_channel_poll_one() - Return a single completed transaction on a channel
* @channel: Channel to be polled
*
* Return: Transaction pointer, or null if none are available
*
* This function returns the first of a channel's completed transactions.
* If no transactions are in completed state, the hardware is consulted to
* determine whether any new transactions have completed. If so, they're
* moved to completed state and the first such transaction is returned.
* If there are no more completed transactions, a null pointer is returned.
*/
static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
{
struct gsi_trans *trans;
/* Get the first completed transaction */
trans = gsi_channel_trans_complete(channel);
if (trans)
gsi_trans_move_polled(trans);
return trans;
}
/**
* gsi_channel_poll() - NAPI poll function for a channel
* @napi: NAPI structure for the channel
* @budget: Budget supplied by NAPI core
*
* Return: Number of items polled (<= budget)
*
* Single transactions completed by hardware are polled until either
* the budget is exhausted, or there are no more. Each transaction
* polled is passed to gsi_trans_complete(), to perform remaining
* completion processing and retire/free the transaction.
*/
static int gsi_channel_poll(struct napi_struct *napi, int budget)
{
struct gsi_channel *channel;
int count;
channel = container_of(napi, struct gsi_channel, napi);
for (count = 0; count < budget; count++) {
struct gsi_trans *trans;
trans = gsi_channel_poll_one(channel);
if (!trans)
break;
gsi_trans_complete(trans);
}
if (count < budget && napi_complete(napi))
gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
return count;
}
/* The event bitmap represents which event ids are available for allocation.
* Set bits are not available, clear bits can be used. This function
* initializes the map so all events supported by the hardware are available,
* then precludes any reserved events from being allocated.
*/
static u32 gsi_event_bitmap_init(u32 evt_ring_max)
{
u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
return event_bitmap;
}
/* Setup function for a single channel */
static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
u32 evt_ring_id = channel->evt_ring_id;
int ret;
if (!gsi_channel_initialized(channel))
return 0;
ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
if (ret)
return ret;
gsi_evt_ring_program(gsi, evt_ring_id);
ret = gsi_channel_alloc_command(gsi, channel_id);
if (ret)
goto err_evt_ring_de_alloc;
gsi_channel_program(channel, true);
if (channel->toward_ipa)
netif_napi_add_tx(&gsi->dummy_dev, &channel->napi,
gsi_channel_poll);
else
netif_napi_add(&gsi->dummy_dev, &channel->napi,
gsi_channel_poll);
return 0;
err_evt_ring_de_alloc:
/* We've done nothing with the event ring yet so don't reset */
gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
return ret;
}
/* Inverse of gsi_channel_setup_one() */
static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
u32 evt_ring_id = channel->evt_ring_id;
if (!gsi_channel_initialized(channel))
return;
netif_napi_del(&channel->napi);
gsi_channel_de_alloc_command(gsi, channel_id);
gsi_evt_ring_reset_command(gsi, evt_ring_id);
gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
}
/* We use generic commands only to operate on modem channels. We don't have
* the ability to determine channel state for a modem channel, so we simply
* issue the command and wait for it to complete.
*/
static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
enum gsi_generic_cmd_opcode opcode,
u8 params)
{
const struct reg *reg;
bool timeout;
u32 offset;
u32 val;
/* The error global interrupt type is always enabled (until we tear
* down), so we will keep it enabled.
*
* A generic EE command completes with a GSI global interrupt of
* type GP_INT1. We only perform one generic command at a time
* (to allocate, halt, or enable/disable flow control on a modem
* channel), and only from this function. So we enable the GP_INT1
* IRQ type here, and disable it again after the command completes.
*/
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
val = ERROR_INT | GP_INT1;
iowrite32(val, gsi->virt + reg_offset(reg));
/* First zero the result code field */
reg = gsi_reg(gsi, CNTXT_SCRATCH_0);
offset = reg_offset(reg);
val = ioread32(gsi->virt + offset);
val &= ~reg_fmask(reg, GENERIC_EE_RESULT);
iowrite32(val, gsi->virt + offset);
/* Now issue the command */
reg = gsi_reg(gsi, GENERIC_CMD);
val = reg_encode(reg, GENERIC_OPCODE, opcode);
val |= reg_encode(reg, GENERIC_CHID, channel_id);
val |= reg_encode(reg, GENERIC_EE, GSI_EE_MODEM);
if (gsi->version >= IPA_VERSION_4_11)
val |= reg_encode(reg, GENERIC_PARAMS, params);
timeout = !gsi_command(gsi, reg_offset(reg), val);
/* Disable the GP_INT1 IRQ type again */
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
iowrite32(ERROR_INT, gsi->virt + reg_offset(reg));
if (!timeout)
return gsi->result;
dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
opcode, channel_id);
return -ETIMEDOUT;
}
static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
{
return gsi_generic_command(gsi, channel_id,
GSI_GENERIC_ALLOCATE_CHANNEL, 0);
}
static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
{
u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
int ret;
do
ret = gsi_generic_command(gsi, channel_id,
GSI_GENERIC_HALT_CHANNEL, 0);
while (ret == -EAGAIN && retries--);
if (ret)
dev_err(gsi->dev, "error %d halting modem channel %u\n",
ret, channel_id);
}
/* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
void
gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
{
u32 retries = 0;
u32 command;
int ret;
command = enable ? GSI_GENERIC_ENABLE_FLOW_CONTROL
: GSI_GENERIC_DISABLE_FLOW_CONTROL;
/* Disabling flow control on IPA v4.11+ can return -EAGAIN if enable
* is underway. In this case we need to retry the command.
*/
if (!enable && gsi->version >= IPA_VERSION_4_11)
retries = GSI_CHANNEL_MODEM_FLOW_RETRIES;
do
ret = gsi_generic_command(gsi, channel_id, command, 0);
while (ret == -EAGAIN && retries--);
if (ret)
dev_err(gsi->dev,
"error %d %sabling mode channel %u flow control\n",
ret, enable ? "en" : "dis", channel_id);
}
/* Setup function for channels */
static int gsi_channel_setup(struct gsi *gsi)
{
u32 channel_id = 0;
u32 mask;
int ret;
gsi_irq_enable(gsi);
mutex_lock(&gsi->mutex);
do {
ret = gsi_channel_setup_one(gsi, channel_id);
if (ret)
goto err_unwind;
} while (++channel_id < gsi->channel_count);
/* Make sure no channels were defined that hardware does not support */
while (channel_id < GSI_CHANNEL_COUNT_MAX) {
struct gsi_channel *channel = &gsi->channel[channel_id++];
if (!gsi_channel_initialized(channel))
continue;
ret = -EINVAL;
dev_err(gsi->dev, "channel %u not supported by hardware\n",
channel_id - 1);
channel_id = gsi->channel_count;
goto err_unwind;
}
/* Allocate modem channels if necessary */
mask = gsi->modem_channel_bitmap;
while (mask) {
u32 modem_channel_id = __ffs(mask);
ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
if (ret)
goto err_unwind_modem;
/* Clear bit from mask only after success (for unwind) */
mask ^= BIT(modem_channel_id);
}
mutex_unlock(&gsi->mutex);
return 0;
err_unwind_modem:
/* Compute which modem channels need to be deallocated */
mask ^= gsi->modem_channel_bitmap;
while (mask) {
channel_id = __fls(mask);
mask ^= BIT(channel_id);
gsi_modem_channel_halt(gsi, channel_id);
}
err_unwind:
while (channel_id--)
gsi_channel_teardown_one(gsi, channel_id);
mutex_unlock(&gsi->mutex);
gsi_irq_disable(gsi);
return ret;
}
/* Inverse of gsi_channel_setup() */
static void gsi_channel_teardown(struct gsi *gsi)
{
u32 mask = gsi->modem_channel_bitmap;
u32 channel_id;
mutex_lock(&gsi->mutex);
while (mask) {
channel_id = __fls(mask);
mask ^= BIT(channel_id);
gsi_modem_channel_halt(gsi, channel_id);
}
channel_id = gsi->channel_count - 1;
do
gsi_channel_teardown_one(gsi, channel_id);
while (channel_id--);
mutex_unlock(&gsi->mutex);
gsi_irq_disable(gsi);
}
/* Turn off all GSI interrupts initially */
static int gsi_irq_setup(struct gsi *gsi)
{
const struct reg *reg;
int ret;
/* Writing 1 indicates IRQ interrupts; 0 would be MSI */
reg = gsi_reg(gsi, CNTXT_INTSET);
iowrite32(reg_bit(reg, INTYPE), gsi->virt + reg_offset(reg));
/* Disable all interrupt types */
gsi_irq_type_update(gsi, 0);
/* Clear all type-specific interrupt masks */
reg = gsi_reg(gsi, CNTXT_SRC_CH_IRQ_MSK);
iowrite32(0, gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_SRC_EV_CH_IRQ_MSK);
iowrite32(0, gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_GLOB_IRQ_EN);
iowrite32(0, gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, CNTXT_SRC_IEOB_IRQ_MSK);
iowrite32(0, gsi->virt + reg_offset(reg));
/* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
if (gsi->version > IPA_VERSION_3_1) {
reg = gsi_reg(gsi, INTER_EE_SRC_CH_IRQ_MSK);
iowrite32(0, gsi->virt + reg_offset(reg));
reg = gsi_reg(gsi, INTER_EE_SRC_EV_CH_IRQ_MSK);
iowrite32(0, gsi->virt + reg_offset(reg));
}
reg = gsi_reg(gsi, CNTXT_GSI_IRQ_EN);
iowrite32(0, gsi->virt + reg_offset(reg));
ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
if (ret)
dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
return ret;
}
static void gsi_irq_teardown(struct gsi *gsi)
{
free_irq(gsi->irq, gsi);
}
/* Get # supported channel and event rings; there is no gsi_ring_teardown() */
static int gsi_ring_setup(struct gsi *gsi)
{
struct device *dev = gsi->dev;
const struct reg *reg;
u32 count;
u32 val;
if (gsi->version < IPA_VERSION_3_5_1) {
/* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
return 0;
}
reg = gsi_reg(gsi, HW_PARAM_2);
val = ioread32(gsi->virt + reg_offset(reg));
count = reg_decode(reg, NUM_CH_PER_EE, val);
if (!count) {
dev_err(dev, "GSI reports zero channels supported\n");
return -EINVAL;
}
if (count > GSI_CHANNEL_COUNT_MAX) {
dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
GSI_CHANNEL_COUNT_MAX, count);
count = GSI_CHANNEL_COUNT_MAX;
}
gsi->channel_count = count;
count = reg_decode(reg, NUM_EV_PER_EE, val);
if (!count) {
dev_err(dev, "GSI reports zero event rings supported\n");
return -EINVAL;
}
if (count > GSI_EVT_RING_COUNT_MAX) {
dev_warn(dev,
"limiting to %u event rings; hardware supports %u\n",
GSI_EVT_RING_COUNT_MAX, count);
count = GSI_EVT_RING_COUNT_MAX;
}
gsi->evt_ring_count = count;
return 0;
}
/* Setup function for GSI. GSI firmware must be loaded and initialized */
int gsi_setup(struct gsi *gsi)
{
const struct reg *reg;
u32 val;
int ret;
/* Here is where we first touch the GSI hardware */
reg = gsi_reg(gsi, GSI_STATUS);
val = ioread32(gsi->virt + reg_offset(reg));
if (!(val & reg_bit(reg, ENABLED))) {
dev_err(gsi->dev, "GSI has not been enabled\n");
return -EIO;
}
ret = gsi_irq_setup(gsi);
if (ret)
return ret;
ret = gsi_ring_setup(gsi); /* No matching teardown required */
if (ret)
goto err_irq_teardown;
/* Initialize the error log */
reg = gsi_reg(gsi, ERROR_LOG);
iowrite32(0, gsi->virt + reg_offset(reg));
ret = gsi_channel_setup(gsi);
if (ret)
goto err_irq_teardown;
return 0;
err_irq_teardown:
gsi_irq_teardown(gsi);
return ret;
}
/* Inverse of gsi_setup() */
void gsi_teardown(struct gsi *gsi)
{
gsi_channel_teardown(gsi);
gsi_irq_teardown(gsi);
}
/* Initialize a channel's event ring */
static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
{
struct gsi *gsi = channel->gsi;
struct gsi_evt_ring *evt_ring;
int ret;
ret = gsi_evt_ring_id_alloc(gsi);
if (ret < 0)
return ret;
channel->evt_ring_id = ret;
evt_ring = &gsi->evt_ring[channel->evt_ring_id];
evt_ring->channel = channel;
ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
if (!ret)
return 0; /* Success! */
dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
ret, gsi_channel_id(channel));
gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
return ret;
}
/* Inverse of gsi_channel_evt_ring_init() */
static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
{
u32 evt_ring_id = channel->evt_ring_id;
struct gsi *gsi = channel->gsi;
struct gsi_evt_ring *evt_ring;
evt_ring = &gsi->evt_ring[evt_ring_id];
gsi_ring_free(gsi, &evt_ring->ring);
gsi_evt_ring_id_free(gsi, evt_ring_id);
}
static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
const struct ipa_gsi_endpoint_data *data)
{
const struct gsi_channel_data *channel_data;
u32 channel_id = data->channel_id;
struct device *dev = gsi->dev;
/* Make sure channel ids are in the range driver supports */
if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
dev_err(dev, "bad channel id %u; must be less than %u\n",
channel_id, GSI_CHANNEL_COUNT_MAX);
return false;
}
if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
return false;
}
if (command && !data->toward_ipa) {
dev_err(dev, "command channel %u is not TX\n", channel_id);
return false;
}
channel_data = &data->channel;
if (!channel_data->tlv_count ||
channel_data->tlv_count > GSI_TLV_MAX) {
dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
channel_id, channel_data->tlv_count, GSI_TLV_MAX);
return false;
}
if (command && IPA_COMMAND_TRANS_TRE_MAX > channel_data->tlv_count) {
dev_err(dev, "command TRE max too big for channel %u (%u > %u)\n",
channel_id, IPA_COMMAND_TRANS_TRE_MAX,
channel_data->tlv_count);
return false;
}
/* We have to allow at least one maximally-sized transaction to
* be outstanding (which would use tlv_count TREs). Given how
* gsi_channel_tre_max() is computed, tre_count has to be almost
* twice the TLV FIFO size to satisfy this requirement.
*/
if (channel_data->tre_count < 2 * channel_data->tlv_count - 1) {
dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
channel_id, channel_data->tlv_count,
channel_data->tre_count);
return false;
}
if (!is_power_of_2(channel_data->tre_count)) {
dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
channel_id, channel_data->tre_count);
return false;
}
if (!is_power_of_2(channel_data->event_count)) {
dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
channel_id, channel_data->event_count);
return false;
}
return true;
}
/* Init function for a single channel */
static int gsi_channel_init_one(struct gsi *gsi,
const struct ipa_gsi_endpoint_data *data,
bool command)
{
struct gsi_channel *channel;
u32 tre_count;
int ret;
if (!gsi_channel_data_valid(gsi, command, data))
return -EINVAL;
/* Worst case we need an event for every outstanding TRE */
if (data->channel.tre_count > data->channel.event_count) {
tre_count = data->channel.event_count;
dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
data->channel_id, tre_count);
} else {
tre_count = data->channel.tre_count;
}
channel = &gsi->channel[data->channel_id];
memset(channel, 0, sizeof(*channel));
channel->gsi = gsi;
channel->toward_ipa = data->toward_ipa;
channel->command = command;
channel->trans_tre_max = data->channel.tlv_count;
channel->tre_count = tre_count;
channel->event_count = data->channel.event_count;
ret = gsi_channel_evt_ring_init(channel);
if (ret)
goto err_clear_gsi;
ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
if (ret) {
dev_err(gsi->dev, "error %d allocating channel %u ring\n",
ret, data->channel_id);
goto err_channel_evt_ring_exit;
}
ret = gsi_channel_trans_init(gsi, data->channel_id);
if (ret)
goto err_ring_free;
if (command) {
u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
ret = ipa_cmd_pool_init(channel, tre_max);
}
if (!ret)
return 0; /* Success! */
gsi_channel_trans_exit(channel);
err_ring_free:
gsi_ring_free(gsi, &channel->tre_ring);
err_channel_evt_ring_exit:
gsi_channel_evt_ring_exit(channel);
err_clear_gsi:
channel->gsi = NULL; /* Mark it not (fully) initialized */
return ret;
}
/* Inverse of gsi_channel_init_one() */
static void gsi_channel_exit_one(struct gsi_channel *channel)
{
if (!gsi_channel_initialized(channel))
return;
if (channel->command)
ipa_cmd_pool_exit(channel);
gsi_channel_trans_exit(channel);
gsi_ring_free(channel->gsi, &channel->tre_ring);
gsi_channel_evt_ring_exit(channel);
}
/* Init function for channels */
static int gsi_channel_init(struct gsi *gsi, u32 count,
const struct ipa_gsi_endpoint_data *data)
{
bool modem_alloc;
int ret = 0;
u32 i;
/* IPA v4.2 requires the AP to allocate channels for the modem */
modem_alloc = gsi->version == IPA_VERSION_4_2;
gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
gsi->ieob_enabled_bitmap = 0;
/* The endpoint data array is indexed by endpoint name */
for (i = 0; i < count; i++) {
bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
if (ipa_gsi_endpoint_data_empty(&data[i]))
continue; /* Skip over empty slots */
/* Mark modem channels to be allocated (hardware workaround) */
if (data[i].ee_id == GSI_EE_MODEM) {
if (modem_alloc)
gsi->modem_channel_bitmap |=
BIT(data[i].channel_id);
continue;
}
ret = gsi_channel_init_one(gsi, &data[i], command);
if (ret)
goto err_unwind;
}
return ret;
err_unwind:
while (i--) {
if (ipa_gsi_endpoint_data_empty(&data[i]))
continue;
if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
continue;
}
gsi_channel_exit_one(&gsi->channel[data->channel_id]);
}
return ret;
}
/* Inverse of gsi_channel_init() */
static void gsi_channel_exit(struct gsi *gsi)
{
u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
do
gsi_channel_exit_one(&gsi->channel[channel_id]);
while (channel_id--);
gsi->modem_channel_bitmap = 0;
}
/* Init function for GSI. GSI hardware does not need to be "ready" */
int gsi_init(struct gsi *gsi, struct platform_device *pdev,
enum ipa_version version, u32 count,
const struct ipa_gsi_endpoint_data *data)
{
int ret;
gsi_validate_build();
gsi->dev = &pdev->dev;
gsi->version = version;
/* GSI uses NAPI on all channels. Create a dummy network device
* for the channel NAPI contexts to be associated with.
*/
init_dummy_netdev(&gsi->dummy_dev);
init_completion(&gsi->completion);
ret = gsi_reg_init(gsi, pdev);
if (ret)
return ret;
ret = gsi_irq_init(gsi, pdev); /* No matching exit required */
if (ret)
goto err_reg_exit;
ret = gsi_channel_init(gsi, count, data);
if (ret)
goto err_reg_exit;
mutex_init(&gsi->mutex);
return 0;
err_reg_exit:
gsi_reg_exit(gsi);
return ret;
}
/* Inverse of gsi_init() */
void gsi_exit(struct gsi *gsi)
{
mutex_destroy(&gsi->mutex);
gsi_channel_exit(gsi);
gsi_reg_exit(gsi);
}
/* The maximum number of outstanding TREs on a channel. This limits
* a channel's maximum number of transactions outstanding (worst case
* is one TRE per transaction).
*
* The absolute limit is the number of TREs in the channel's TRE ring,
* and in theory we should be able use all of them. But in practice,
* doing that led to the hardware reporting exhaustion of event ring
* slots for writing completion information. So the hardware limit
* would be (tre_count - 1).
*
* We reduce it a bit further though. Transaction resource pools are
* sized to be a little larger than this maximum, to allow resource
* allocations to always be contiguous. The number of entries in a
* TRE ring buffer is a power of 2, and the extra resources in a pool
* tends to nearly double the memory allocated for it. Reducing the
* maximum number of outstanding TREs allows the number of entries in
* a pool to avoid crossing that power-of-2 boundary, and this can
* substantially reduce pool memory requirements. The number we
* reduce it by matches the number added in gsi_trans_pool_init().
*/
u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
{
struct gsi_channel *channel = &gsi->channel[channel_id];
/* Hardware limit is channel->tre_count - 1 */
return channel->tre_count - (channel->trans_tre_max - 1);
}
|